题目内容

20.已知α、β都是锐角,cosα=$\frac{1}{7}$,cos(α+β)=-$\frac{11}{14}$,则tanα=4$\sqrt{3}$,cosβ=$\frac{1}{2}$.

分析 利用同角三角函数的基本关系,两角差的三角公式,求得要求式子的值.

解答 解:∵α、β都是锐角,cosα=$\frac{1}{7}$,cos(α+β)=-$\frac{11}{14}$,
∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{4\sqrt{3}}{7}$,sin(α+β)=$\sqrt{{1-cos}^{2}(α+β)}$=$\frac{5\sqrt{3}}{14}$,
则tanα=$\frac{sinα}{cosα}$=4$\sqrt{3}$.
cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=-$\frac{11}{14}$•$\frac{1}{7}$+$\frac{5\sqrt{3}}{14}$•$\frac{4\sqrt{3}}{7}$=$\frac{49}{98}$=$\frac{1}{2}$,
故答案为:4$\sqrt{3}$;$\frac{1}{2}$.

点评 本题主要考查同角三角函数的基本关系,两角差的三角公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网