题目内容

17.(1)求值:$\frac{{sin{{330}^0}.sin(-\frac{13}{3}π).sin{{270}^0}}}{{cos(-\frac{19}{6}π).cos{{690}^0}}}$
(2)已知角α终边上一点P(-4,3),求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值.

分析 (1)利用诱导公式和特殊角的三角函数值进行化简;
(2)利用诱导公式对所求的代数式进行化简,然后代入求值.

解答 解:(1)原式=$\frac{-sin30°•(-sin\frac{π}{3})•(-sin90°)}{-cos\frac{π}{6}•cos30°}$=$\frac{{(-\frac{1}{2}).(-\frac{{\sqrt{3}}}{2}).(-1)}}{{(-\frac{{\sqrt{3}}}{2}).\frac{{\sqrt{3}}}{2}}}=\frac{{\sqrt{3}}}{3}$;
(2)∵角α终边上一点P(-4,3),
∴tanα=-$\frac{3}{4}$,
∴$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$
=$\frac{-sinα•sinα}{-sinα•cosα}$
=tanα
=-$\frac{3}{4}$.

点评 本题主要考察了同角三角函数关系式和诱导公式的应用,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网