ÌâÄ¿ÄÚÈÝ

5£®ÒÑÖªÊýÁÐ{an+1-2an}£¨n¡ÊN*£©Êǹ«±ÈΪ2µÄµÈ±ÈÊýÁУ¬ÆäÖÐa1=1£¬a2=4£®
£¨¢ñ£©Ö¤Ã÷£ºÊýÁÐ$\{\frac{a_n}{2^n}\}$ÊǵȲîÊýÁУ»
£¨¢ò£©ÇóÊýÁÐ{an}µÄǰnÏîºÍSn£»
£¨ III£©¼ÇÊýÁÐ${c_n}=\frac{{2{a_n}-2n}}{n}£¬£¨n¡Ý2£©$£¬Ö¤Ã÷£º$\frac{1}{2}-{£¨\frac{1}{2}£©^n}£¼\frac{1}{c_2}+\frac{1}{c_3}+¡­+\frac{1}{c_n}£¼1-{£¨\frac{1}{2}£©^{n-1}}$£®

·ÖÎö £¨¢ñ£©Í¨¹ýµÈ±ÈÊýÁеÄͨÏʽ¿ÉÖªan+1-2an=2n£¬Á½¶Ëͬ³ý2n+1¼´µÃ½áÂÛ£»
£¨¢ò£©ÀûÓôíλÏà¼õ·¨¼ÆËã¼´µÃ½áÂÛ£¬
£¨¢ó£©ÀûÓ÷ÅËõ·¨¼´¿ÉÖ¤Ã÷£®

½â´ð ½â£º£¨¢ñ£©Ö¤Ã÷£ºÓÉÒÑÖªµÃ${a_{n+1}}-2{a_n}=£¨{a_2}-2{a_1}£©•{2^{n-1}}={2^n}$£¬
Á½¶Ëͬ³ý2n+1µÃ£º$\frac{{{a_{n+1}}}}{{{2^{n+1}}}}-\frac{a_n}{2^n}=\frac{1}{2}$£¬
ËùÒÔÊýÁÐ$\{\frac{a_n}{2^n}\}$ÊÇÒÔÊ×ÏîΪ$\frac{1}{2}$£¬¹«²îΪ$\frac{1}{2}$µÄµÈ²îÊýÁУ»
£¨¢ò£©ÓÉ£¨¢ñ£©Öª$\frac{a_n}{2^n}=\frac{1}{2}n$£¬ËùÒÔ${a_n}=n•{2^{n-1}}$£¬
${S_n}=1•{2^0}+2•{2^1}+¡­+n•{2^{n-1}}$£¬
Ôò2Sn=1•21+2•22+¡­+n•2n£¬
Ïà¼õµÃ£º$-{S_n}=1•{2^0}+{2^1}+¡­+{2^{n-1}}-n•{2^n}$£¬
ËùÒÔ$-{S_n}=\frac{{1-{2^n}}}{1-2}-n•{2^n}$£¬
¼´${S_n}=£¨n-1£©{2^n}+1$£®                                  
£¨¢ó£©Ö¤Ã÷£ºÊýÁÐcn=2n-2£¬n¡Ý2£¬
¡à$\frac{1}{c_n}=\frac{1}{{{2^n}-2}}£¾\frac{1}{2^n}$£¬
¡à$\frac{1}{c_2}+\frac{1}{c_3}+¡­+\frac{1}{c_n}£¾\frac{1}{2^2}+\frac{1}{2^3}+¡­+\frac{1}{2^n}=\frac{{\frac{1}{4}[1-{{£¨\frac{1}{2}£©}^{n-1}}]}}{{1-\frac{1}{2}}}=\frac{1}{2}-{£¨\frac{1}{2}£©^n}$
ÓÖ¡ß$\frac{1}{c_n}=\frac{1}{{{2^n}-2}}£¼\frac{2}{2^n}={£¨\frac{1}{2}£©^{n-1}}$£¬£¨n¡Ý3£©£¬
µ±n=2ʱ£¬$\frac{1}{c_2}=\frac{1}{2}$£¬
¡à$\frac{1}{{c}_{2}}+\frac{1}{{c}_{3}}+¡­+\frac{1}{{c}_{n}}$£¼$\frac{1}{{2}^{1}}+\frac{1}{{2}^{2}}+¡­+\frac{1}{{2}^{n-1}}$=$\frac{\frac{1}{2}[1-£¨\frac{1}{2}£©^{n-1}]}{1-\frac{1}{2}}$=1-£¨$\frac{1}{2}$£©n-1£¬
ËùÒÔÔ­²»µÈʽµÃÖ¤£®

µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏǰnÏîºÍ²»µÈʽµÄÖ¤Ã÷£¬¶Ô±í´ïʽµÄÁé»î±äÐμ°´íλÏà¼õ·¨ºÍ·ÅËõÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø