题目内容

已知实数x,y满足
x≥0
y≥0
x+4y≤8
,则z=x+y的最大值是(  )
A、0B、2C、4D、8
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式对应的平面区域,即可求出平面区域的面积.利用z的几何意义求f的最小值.
解答: 解:由z=x+y,则y=-x+z,平移直线y=-x+z,
由图象可知当直线y=-x+z经过点C时,直线的截距最大,此时z最大.
y=0
x+4y=8
,解得
x=8
y=0
,即C(8,0),
代入z=x+y得z=8+0=8.
故选:D
点评:本题主要考查简单的线性规划的应用,利用目标函数的几何意义,利用数形结合是解决此类问题的基本方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网