题目内容
已知函数f(x)=2x2-2ax+b,当x=-1时,f(x)取最小值-8,记集合A={x|f(x)>0},B={x||x-t|≤1}
(Ⅰ)当t=1时,求(∁RA)∪B;
(Ⅱ)设命题P:A∩B≠∅,若¬P为真命题,求实数t的取值范围.
(Ⅰ)当t=1时,求(∁RA)∪B;
(Ⅱ)设命题P:A∩B≠∅,若¬P为真命题,求实数t的取值范围.
考点:命题的真假判断与应用,命题的否定,二次函数的性质
专题:简易逻辑
分析:(I)首先根据条件利用二次函数最值得性质求的二次函数的解析式,进而将集合A具体化,又因为t=1所以可以将集合B具体化,从而问题即可获得解答;
(Ⅱ)首先要将条件进行转化,即命题P:A∩B≠空集为假命题,再结合集合A、B的特征利用数轴即可获得必要的条件,解不等式组即可获得问题的解答.
(Ⅱ)首先要将条件进行转化,即命题P:A∩B≠空集为假命题,再结合集合A、B的特征利用数轴即可获得必要的条件,解不等式组即可获得问题的解答.
解答:
解:由题意(-1,-8)为二次函数的顶点,
∴f(x)=2(x+1)2-8=2(x2+2x-3).
A={x|x<-3或x>1}.
(Ⅰ)B={x||x-1|≤1}={x|0≤x≤2}.
∴(CRA)∪B={x|-3≤x≤1}∪{x|0≤x≤2}={x|-3≤x≤2}.
∴(CRA)∪B={x|-3≤x≤2}.
(Ⅱ)∵B={x|t-1≤x≤t+1}.且由题意知:命题P:A∩B≠空集为假命题,
所以必有:
,解得t∈[-2,0].
∴实数t的取值范围是[-2,0].
∴f(x)=2(x+1)2-8=2(x2+2x-3).
A={x|x<-3或x>1}.
(Ⅰ)B={x||x-1|≤1}={x|0≤x≤2}.
∴(CRA)∪B={x|-3≤x≤1}∪{x|0≤x≤2}={x|-3≤x≤2}.
∴(CRA)∪B={x|-3≤x≤2}.
(Ⅱ)∵B={x|t-1≤x≤t+1}.且由题意知:命题P:A∩B≠空集为假命题,
所以必有:
|
∴实数t的取值范围是[-2,0].
点评:本题考查的是集合运算和命题的真假判断与应用的综合类问题.在解答的过程当中充分体现了二次函数的知识、集合运算的知识以及命题的知识.同时问题转化的思想也在此题中得到了很好的体现.值得同学们体会和反思.
练习册系列答案
相关题目
f(x)=lnx+2-x的零点所在区间( )
| A、(0,1) |
| B、(1,2) |
| C、(2,3) |
| D、(3,4) |