题目内容
10.设x1,x2,x3,x4,x5是1,2,3,4,5的任一排列,则x1+2x2+3x3+4x4+5x5的最小值是35.分析 利用反序排列,推出结果即可.
解答 解:由题意可知:x1,x2,x3,x4,x5是1,2,3,4,5的反序排列时,x1+2x2+3x3+4x4+5x5取得最小值:
解:1×5+2×4+3×3+4×2+5×1=35.
故答案为:35.
点评 本题考查反序排列的性质,考查计算能力.
练习册系列答案
相关题目
2.
如图,在△ABC中,设$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AC}=\overrightarrow b$,AP的中点为Q,BQ的中点为R,CR的中点为P,若$\overrightarrow{AP}=m\vec a+n\vec b$,则m、n对应的值为 ( )
| A. | $\frac{2}{7},\frac{4}{7}$ | B. | $\frac{1}{2},\frac{1}{4}$ | C. | $\frac{1}{6},\frac{2}{7}$ | D. | $\frac{1}{6},\frac{3}{7}$ |
19.已知O为坐标原点,A,B两点的坐标均满足不等式组$\left\{\begin{array}{l}{x-3y+1≤0}\\{x+y-3≤0}\\{x-1≥0}\end{array}\right.$,设$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为θ,则sinθ的最大值为( )
| A. | $\frac{1}{2}$ | B. | $\frac{4\sqrt{65}}{65}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{5}$ |