题目内容
1.已知函数f(x)=sinx,若存在x1,x2,…,xn满足0≤x1<x2<…<xn≤nπ,n∈N+,且|f(x1)-f(x2)|+|f(x2)-f(x3)|+…+|f(xm-1)-f(xm)|=12,(m≥2,m∈N+),当m取最小值时,n的最小值为6.分析 由正弦函数的有界性可得,对任意xi,xj(i,j=1,2,3,…,m),都有|f(xi)-f(xj)|≤f(x)max-f(x)min=2,要使m取得最小值,尽可能多让xi(i=1,2,3,…,m)取得最高点,然后作图可得满足条件的最小m值.
解答 解:y=sinx对任意xi,xj(i,j=1,2,3,…,m),都有|f(xi)-f(xj)|≤f(x)max-f(x)min=2,
要使m取得最小值,尽可能多让xi(i=1,2,3,…,m)取得最高点,
考虑0≤x1<x2<…<xm≤nπ,|f(x1)-f(x2)|+|f(x2)-f(x3)|+…+|f(xm-1)-f(xm)|=12,
则按下图取值即可满足条件,![]()
∴m的最小值为8,此时n的值为6.
故答案为:6.
点评 本题主要考查正弦函数的图象和性质,考查分析问题和解决问题的能力,考查数学转化思想方法,正确理解对任意xi,xj(i,j=1,2,3,…,m),都有|f(xi)-f(xj)|≤f(x)max-f(x)min=2是解答该题的关键,属于难题.
练习册系列答案
相关题目
9.直线x-y-3=0与圆(x-1)2+y2=2的位置关系( )
| A. | 相离 | B. | 相切 | C. | 相交 | D. | 无法判断 |
6.等比数列{an}中,已知a1=3,an=96,其前n顶和Sn=189,则n的值为( )
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
13.已知角A为锐角,则f(A)=$\frac{[cos(π-2A)-1]sin(π+\frac{A}{2})sin(\frac{π}{2}-\frac{A}{2})}{si{n}^{2}(\frac{π}{2}-\frac{A}{2})-si{n}^{2}(π-\frac{A}{2})}$+cos2A的最大值为( )
| A. | $\frac{\sqrt{2}+1}{2}$ | B. | $\frac{\sqrt{2}-1}{2}$ | C. | $\frac{\sqrt{3}-1}{4}$ | D. | $\frac{\sqrt{3}+1}{4}$ |