题目内容

已知函数f(x)=lnx,g(x)=
1
2
x2-bx(b为常数),若b>1对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,则实数b的取值范围是
 
考点:导数在最大值、最小值问题中的应用
专题:
分析:要使得对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,利用导数的几何意义是切线的斜率,得到对于区间[1,2]上的任意实数x,|f′(x)|>|g′(x)|,列出b的不等关系,从而得出b的取值范围.
解答: 解:对于区间[1,2]上的任意实数x,f′(x)=
1
x
∈[
1
2
,1].
g′(x)=x-b∈[1-b,2-b],
要使得对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,
若用注意到f(x)是增函数,不妨设x1>x2,则f(x1)>f(x2),问题转化为|f(x1)-f(x2)|>|g(x1)-g(x2)|
等价于-f(x1)+f(x2)<g(x1)-g(x2)<f(x1)-f(x2)从而f(x1)-g(x1)>f(x2)-g(x2)且f(x1)+g(x1)>f(x2)+g(x2),
即f(x)-g(x)与f(x)+g(x)都是增函数,
利用导数的几何意义是切线的斜率,得到|f′(x)|>|g′(x)|,
1
x
>|b-x|,于是x-
1
x
≤b≤x+
1
x
即(x-
1
x
max≤b≤(x+
1
x
min
3
2
≤b≤2.
则b的取值范围[
3
2
,2].
故答案为:[
3
2
,2].
点评:本题考查导数在最大值、最小值问题中的应用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网