题目内容
设数列{an}的前n项和为Sn,a1=1,Sn=nan-2n(n-1).
(1)求数列{an}的通项公式an;
(2)设数列bn=an-n+1,且{
}的前n项和为Tn,求证:
≤Tn<
.
(1)求数列{an}的通项公式an;
(2)设数列bn=an-n+1,且{
| 1 |
| bnbn+1 |
| 1 |
| 4 |
| 1 |
| 3 |
考点:数列与不等式的综合,数列的求和
专题:综合题,综合法,等差数列与等比数列
分析:(1)根据公式an=Sn-Sn-1,(n≥2),化简得:当n≥2时,an-an-1=4,判断出等差数列,运用等差数列的通项公式求解.
(2)运用裂项方法求出Cn=
=
(
-
),得出Tn=
(1-
)根据关于n的单调递增函数,求解出范围即可证明.
(2)运用裂项方法求出Cn=
| 1 |
| bnbn+1 |
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
| 1 |
| 3 |
| 1 |
| 3n+1 |
解答:
解:(1)∵数列{an}的前n项和为Sn,a1=1,Sn=nan-2n(n-1).
∴当n≥2时,Sn=nan-2n(n-1)①,Sn-1=(n-1)an-1-2(n-1)(n-2)②.
∴①-②得:Sn-Sn-1=nan-(n-1)an-1-4n+4,
即当n≥2时,an-an-1=4,
∴数列{an}为等差数列,a1=1,d=4
即an=4n-3,
故数列{an}的通项公式an=4n-3
(2)∵数列bn=an-n+1,
∴bn=4n-3-n+1=3n-2,bn+1=3n+1
∵设Cn=
=
(
-
),
∴数列{
}的前n项和为Tn=
(1-
+
-
+…+
-
)=
(1-
)
∵Tn=
(1-
)是关于n的单调递增函数
Tn<
当n=1时,T1=
(1-
)=
,
∴
≤Tn<
∴当n≥2时,Sn=nan-2n(n-1)①,Sn-1=(n-1)an-1-2(n-1)(n-2)②.
∴①-②得:Sn-Sn-1=nan-(n-1)an-1-4n+4,
即当n≥2时,an-an-1=4,
∴数列{an}为等差数列,a1=1,d=4
即an=4n-3,
故数列{an}的通项公式an=4n-3
(2)∵数列bn=an-n+1,
∴bn=4n-3-n+1=3n-2,bn+1=3n+1
∵设Cn=
| 1 |
| bnbn+1 |
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
∴数列{
| 1 |
| bnbn+1 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
| 1 |
| 3 |
| 1 |
| 3n+1 |
∵Tn=
| 1 |
| 3 |
| 1 |
| 3n+1 |
Tn<
| 1 |
| 3 |
当n=1时,T1=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
∴
| 1 |
| 4 |
| 1 |
| 3 |
点评:本题综合考查了数列的概念,性质,函数的单调性的运用,裂项求数列的和等思想方法.
练习册系列答案
相关题目
| x2 |
| a2 |
| y2 |
| b2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
已知方程x2+(2+a)x+1+a+b=0的两根是x1,x2,且0<x1<1<x2,则
的取值范围是( )
| b |
| a |
A、(-2,-
| ||
B、[-2,-
| ||
C、(-1,-
| ||
| D、(-2,-1) |