ÌâÄ¿ÄÚÈÝ
ÉèµÈ±ÈÊýÁÐ{an}µÄÊ×ÏîΪa1=2£¬2n2-£¨t+bn£©n+
bn=0(t¡ÊR£¬n¡ÊN*)£®¹«±ÈΪq£¨qΪÕýÕûÊý£©£¬ÇÒÂú×ã3a3ÊÇ8a1Óëa5µÄµÈ²îÖÐÏÊýÁÐ{bn}Âú×ã
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÊÔÈ·¶¨tµÄÖµ£¬Ê¹µÃÊýÁÐ{bn}ΪµÈ²îÊýÁУ»
£¨3£©µ±{bn}ΪµÈ²îÊýÁÐʱ£¬¶Ôÿ¸öÕýÕûÊýk£¬ÔÚakÓëak+1Ö®¼ä²åÈëbk¸ö2£¬µÃµ½Ò»¸öÐÂÊýÁÐ{cn}£®ÉèTnÊÇÊýÁÐ{cn}µÄǰnÏîºÍ£¬ÊÔÇóÂú×ãTm=2cm+1µÄËùÓÐÕýÕûÊým£®
| 3 |
| 2 |
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÊÔÈ·¶¨tµÄÖµ£¬Ê¹µÃÊýÁÐ{bn}ΪµÈ²îÊýÁУ»
£¨3£©µ±{bn}ΪµÈ²îÊýÁÐʱ£¬¶Ôÿ¸öÕýÕûÊýk£¬ÔÚakÓëak+1Ö®¼ä²åÈëbk¸ö2£¬µÃµ½Ò»¸öÐÂÊýÁÐ{cn}£®ÉèTnÊÇÊýÁÐ{cn}µÄǰnÏîºÍ£¬ÊÔÇóÂú×ãTm=2cm+1µÄËùÓÐÕýÕûÊým£®
¿¼µã£ºµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄ×ÛºÏ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÓÉÒÑÖª¿ÉÇó³öqµÄÖµ£¬´Ó¶ø¿ÉÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÓÉÒÑÖª¿ÉÇóbn=
£¬´Ó¶ø¿ÉÒÀ´Îд³öb1£¬b2£¬b3ÈôÊýÁÐ{bn}ΪµÈ²îÊýÁУ¬ÔòÓÐb1+b3=2b2£¬´Ó¶ø¿ÉÈ·¶¨tµÄÖµ£»
£¨3£©ÒòΪc1=c2=c3=2£¬c4=4£¬c5=c6=2£¬¼ìÑéÖªm=1£¬3£¬4²»ºÏÌâÒ⣬m=2ÊʺÏÌâÒ⣮µ±m¡Ý5ʱ£¬ÈôºóÌíÈëµÄÊý2=cm+1ÔòÒ»¶¨²»ÊʺÏÌâÒ⣬´Ó¶øcm+1±Ø¶¨ÊÇÊýÁÐ{an}ÖеÄijһÏÉècm+1=ak+1Ôò2k-k2-k+1=0£®Óɺ¯ÊýµÄµ¥µ÷ÐÔÖª2k-k2-k+1£¾0¶Ôk¡Ê[5£¬+¡Þ£©ºã³ÉÁ¢£¬¼´ÓÐm¡Ý5¶¼²»ºÏÌâÒ⣮¹ÊÂú×ãÌâÒâµÄÕýÕûÊýÖ»ÓÐm=2£®
£¨2£©ÓÉÒÑÖª¿ÉÇóbn=
| 2n2-tn | ||
n-
|
£¨3£©ÒòΪc1=c2=c3=2£¬c4=4£¬c5=c6=2£¬¼ìÑéÖªm=1£¬3£¬4²»ºÏÌâÒ⣬m=2ÊʺÏÌâÒ⣮µ±m¡Ý5ʱ£¬ÈôºóÌíÈëµÄÊý2=cm+1ÔòÒ»¶¨²»ÊʺÏÌâÒ⣬´Ó¶øcm+1±Ø¶¨ÊÇÊýÁÐ{an}ÖеÄijһÏÉècm+1=ak+1Ôò2k-k2-k+1=0£®Óɺ¯ÊýµÄµ¥µ÷ÐÔÖª2k-k2-k+1£¾0¶Ôk¡Ê[5£¬+¡Þ£©ºã³ÉÁ¢£¬¼´ÓÐm¡Ý5¶¼²»ºÏÌâÒ⣮¹ÊÂú×ãÌâÒâµÄÕýÕûÊýÖ»ÓÐm=2£®
½â´ð£º
½â£º£¨1£©ÒòΪ6a3=8a1+a5£¬ËùÒÔ6q2=8+q4£¬
½âµÃq2=4»òq2=2£¨ÉáÈ¥£©£¬Ôòq=2£®
ÓÖa1=2£¬ËùÒÔan=2n
£¨2£©ÓÉ 2n2-£¨t+bn£©n+
bn=0£¬µÃbn=
£¬
ËùÒÔb1=2t-4£¬b2=16-4t£¬b3=12-2t£¬ÔòÓÉb1+b3=2b2£¬µÃt=3£®
¶øt=3ʱ£¬bn=2n£¬ÓÉbn+1-bn=2£¨³£Êý£©Öª´ËʱÊýÁÐ{bn}ΪµÈ²îÊýÁУ®
£¨3£©ÒòΪc1=c2=c3=2£¬c4=4£¬c5=c6=2£¬¼ìÑéÖªm=1£¬3£¬4²»ºÏÌâÒ⣬m=2ÊʺÏÌâÒ⣮
µ±m¡Ý5ʱ£¬ÈôºóÌíÈëµÄÊý2=cm+1ÔòÒ»¶¨²»ÊʺÏÌâÒ⣬´Ó¶øcm+1±Ø¶¨ÊÇÊýÁÐ{an}ÖеÄijһÏÉècm+1=ak+1Ôò
£¨2+22+23+¡+2k£©+2¡Á£¨b1+b2+b3+¡+bk£©=2¡Á2k+1
ËùÒÔ
+
¡Á2=2¡Á2k+1¼´ÓÐ2k-k2-k+1=0£®
¼Çf£¨k£©=2k-k2-k+1£¬Ôòf¡ä£¨k£©=£¨ln2£©•2k-2k-1£®
¡ß1+2+22+¡+2k-1=2k-1
¡à2k=£¨1+2+22+¡+2k-1£©+1£¾[1+2+22+23+24+22£¨k-5£©]+1=4k+12
ÓÖÒòΪ2ln2=ln4£¾1
¡àf¡ä£¨k£©£¾2ln2£¨2k+6£©-£¨2k+1£©£¾£¨2k+6£©-£¨2k+1£©£¾5£¾0£®
´Ó¶øf£¨k£©ÔÚ[5£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®
ÓÉf£¨5£©=32-25-5+1=3£¾0Öªf£¨k£©£¾0¶Ôk¡Ê[5£¬+¡Þ£©ºã³ÉÁ¢£®
¡àf£¨k£©=0ÔÚ[5£¬+¡Þ£©Î޽⣬¼´ÓÐm¡Ý5¶¼²»ºÏÌâÒ⣮
×ÛÉÏ¿ÉÖª£¬Âú×ãÌâÒâµÄÕýÕûÊýÖ»ÓÐm=2£®
½âµÃq2=4»òq2=2£¨ÉáÈ¥£©£¬Ôòq=2£®
ÓÖa1=2£¬ËùÒÔan=2n
£¨2£©ÓÉ 2n2-£¨t+bn£©n+
| 3 |
| 2 |
| 2n2-tn | ||
n-
|
ËùÒÔb1=2t-4£¬b2=16-4t£¬b3=12-2t£¬ÔòÓÉb1+b3=2b2£¬µÃt=3£®
¶øt=3ʱ£¬bn=2n£¬ÓÉbn+1-bn=2£¨³£Êý£©Öª´ËʱÊýÁÐ{bn}ΪµÈ²îÊýÁУ®
£¨3£©ÒòΪc1=c2=c3=2£¬c4=4£¬c5=c6=2£¬¼ìÑéÖªm=1£¬3£¬4²»ºÏÌâÒ⣬m=2ÊʺÏÌâÒ⣮
µ±m¡Ý5ʱ£¬ÈôºóÌíÈëµÄÊý2=cm+1ÔòÒ»¶¨²»ÊʺÏÌâÒ⣬´Ó¶øcm+1±Ø¶¨ÊÇÊýÁÐ{an}ÖеÄijһÏÉècm+1=ak+1Ôò
£¨2+22+23+¡+2k£©+2¡Á£¨b1+b2+b3+¡+bk£©=2¡Á2k+1
ËùÒÔ
| 2(1-2k) |
| 1-2 |
| (2+2k)k |
| 2 |
¼Çf£¨k£©=2k-k2-k+1£¬Ôòf¡ä£¨k£©=£¨ln2£©•2k-2k-1£®
¡ß1+2+22+¡+2k-1=2k-1
¡à2k=£¨1+2+22+¡+2k-1£©+1£¾[1+2+22+23+24+22£¨k-5£©]+1=4k+12
ÓÖÒòΪ2ln2=ln4£¾1
¡àf¡ä£¨k£©£¾2ln2£¨2k+6£©-£¨2k+1£©£¾£¨2k+6£©-£¨2k+1£©£¾5£¾0£®
´Ó¶øf£¨k£©ÔÚ[5£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®
ÓÉf£¨5£©=32-25-5+1=3£¾0Öªf£¨k£©£¾0¶Ôk¡Ê[5£¬+¡Þ£©ºã³ÉÁ¢£®
¡àf£¨k£©=0ÔÚ[5£¬+¡Þ£©Î޽⣬¼´ÓÐm¡Ý5¶¼²»ºÏÌâÒ⣮
×ÛÉÏ¿ÉÖª£¬Âú×ãÌâÒâµÄÕýÕûÊýÖ»ÓÐm=2£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²ìÁ˵ȲîÊýÁÐÓëµÈ±ÈÊýÁеÄ×ÛºÏÓ¦Ó㬿¼²ìÁ˺¯Êýµ¥µ÷ÐÔµÄÖ¤Ã÷£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖª¼¯ºÏA={x||x-a|¡Ü2}£¬B={x|lg£¨x2+6x+9£©£¾0}£®
£¨¢ñ£©Ç󼯺ÏAºÍ∁RB£»
£¨¢ò£©ÈôA⊆B£¬ÇóʵÊýaµÄȡֵ·¶Î§£®
£¨¢ñ£©Ç󼯺ÏAºÍ∁RB£»
£¨¢ò£©ÈôA⊆B£¬ÇóʵÊýaµÄȡֵ·¶Î§£®
º¯Êýf£¨x£©=x3-3x2-9x+3£¬Èôº¯Êýg£¨x£©=f£¨x£©-m£¬ÔÚx¡Ê[-2£¬5]ÉÏÓÐ3¸öÁãµã£¬ÔòmµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
| A¡¢[1£¬8] |
| B¡¢£¨-24£¬1] |
| C¡¢[1£¬8£© |
| D¡¢£¨-24£¬8£© |