题目内容
| x2 |
| a2 |
| y2 |
| b2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:根据题意可知∠F1PF2=90°,∠PF1F2=5∠PF2F1,进而求得∠PF1F2和∠PF2F1,在Rt△PF1F2分别表示出|PF1|和|PF2|,进而根据椭圆的定义表示出a,进而求得a和c的关系,即椭圆的离心率.
解答:
解:∵|F1F2|=2|OP|,O是F1F2的中点,
∴∠F1PF2=90°
∵∠PF1F2=5∠PF2F1,
∴∠PF1F2=15°,∠PF2F1=75°
∴|PF1|=|F1F2|sin∠PF2F1=2c•sin75°,∴|PF2|=|F1F2|sin∠PF1F2=2c•sin15°,
∴2a=|PF1|+|PF2|=2c•sin75°+2c•sin15°=4csin45°cos30°=
c
∴a=
c
∴e=
=
故选B.
∴∠F1PF2=90°
∵∠PF1F2=5∠PF2F1,
∴∠PF1F2=15°,∠PF2F1=75°
∴|PF1|=|F1F2|sin∠PF2F1=2c•sin75°,∴|PF2|=|F1F2|sin∠PF1F2=2c•sin15°,
∴2a=|PF1|+|PF2|=2c•sin75°+2c•sin15°=4csin45°cos30°=
| 6 |
∴a=
| ||
| 2 |
∴e=
| c |
| a |
| ||
| 3 |
故选B.
点评:本题主要考查了椭圆的简单性质.涉及了圆的性质,解三角形问题等.考查了学生综合分析问题的能力.
练习册系列答案
相关题目
某种细胞每隔30分钟分裂1次,1个分裂成2个,则1个这样的细胞经过4小时30分钟后,可得到的细胞个数为( )
| A、512 | B、511 |
| C、1024 | D、1023 |
下列说法错误的是( )
| A、若命题p:?x∈R,x2-x+1=0,则?p:?x∈R,x2-x+1≠0 |
| B、命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0” |
| C、若y=f(x)为偶函数,则y=f(x+2 )的图象关于直线x=-2对称 |
| D、“a=1”是“函数f(x)=x2-2ax+1在区间[1,+∞)上是增函数”的充要条件 |