ÌâÄ¿ÄÚÈÝ
ÉèxÖá¡¢yÖáÕý·½ÏòµÄµ¥Î»ÏòÁ¿·Ö±ðΪ
£¬
£¬×ø±êÆ½ÃæÉϵĵãAnÂú×ãÌõ¼þ£º
=
+
£¬
=2n
-
£¨n¡ÊN*£©£®
£¨1£©ÈôÊýÁÐ{an}µÄǰnÏîºÍΪsn£¬ÇÒsn=
•
£¬ÇóÊýÁÐ{an}µÄͨÏʽ£®
£¨2£©ÇóÏòÁ¿
µÄ×ø±ê£¬Èô¡÷OA1An+1£¨n¡ÊN*£©µÄÃæ»ýS¡÷OA1An+1¹¹³ÉÊýÁÐ{bn}£¬Ð´³öÊýÁÐ{bn}µÄͨÏʽ£®
£¨3£©Èôcn=
-2£¬Ö¸³önΪºÎֵʱ£¬cnÈ¡µÃ×î´óÖµ£¬²¢ËµÃ÷ÀíÓÉ£®
| i |
| j |
| OA1 |
| i |
| j |
| AnAn+1 |
| i |
| j |
£¨1£©ÈôÊýÁÐ{an}µÄǰnÏîºÍΪsn£¬ÇÒsn=
| OA1 |
| AnAn+1 |
£¨2£©ÇóÏòÁ¿
| OAn+1 |
£¨3£©Èôcn=
| bn |
| an |
¿¼µã£ºÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄÔËËã
רÌ⣺¼ÆËãÌâ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ,Æ½ÃæÏòÁ¿¼°Ó¦ÓÃ
·ÖÎö£º£¨1£©ÔËÓÃÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬½áºÏÏòÁ¿´¹Ö±µÄÌõ¼þ£¬¿ÉµÃSn£¬ÔÙÓÉanÓëSnµÄ¹ØÏµ£¬¼´¿ÉÇóµÃÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÔËÓÃÏòÁ¿µÄ¶à±ßÐη¨Ôò£¬ÒÔ¼°µÈ±ÈÊýÁеÄÇóºÍ¹«Ê½£¬µÃµ½An+1µÄ×ø±ê£¬ÔÙÓÉÈý½ÇÐεÄÃæ»ý¹«Ê½¼´¿ÉµÃµ½Ãæ»ý£¬¼´ÎªÊýÁÐ{bn}µÄͨÏʽ£»
£¨3£©ÅжÏÊýÁÐ{cn}µÄµ¥µ÷ÐÔ£¬ÔËÓÃ×÷²î·¨£¬¼´Îªcn-cn-1£¬¼´¿ÉÅжÏ×î´óÖµ£®
£¨2£©ÔËÓÃÏòÁ¿µÄ¶à±ßÐη¨Ôò£¬ÒÔ¼°µÈ±ÈÊýÁеÄÇóºÍ¹«Ê½£¬µÃµ½An+1µÄ×ø±ê£¬ÔÙÓÉÈý½ÇÐεÄÃæ»ý¹«Ê½¼´¿ÉµÃµ½Ãæ»ý£¬¼´ÎªÊýÁÐ{bn}µÄͨÏʽ£»
£¨3£©ÅжÏÊýÁÐ{cn}µÄµ¥µ÷ÐÔ£¬ÔËÓÃ×÷²î·¨£¬¼´Îªcn-cn-1£¬¼´¿ÉÅжÏ×î´óÖµ£®
½â´ð£º
½â£º£¨1£©ÓÉÌâÒâsn=
•
=2n-1¢Ù£¬
µ±n=1ʱ£¬a1=s1=2 -1=1£¬
µ±n¡Ý2ʱ£¬sn-1=2n-1-1¢Ú
ÓÉ ¢Ù-¢ÚµÃ£ºan=2n-1-(2n-1-1)=2n-1£¬
ÓÖµ±n=1ʱ£¬a1=1·ûºÏÌâÒ⣬ËùÒÔan=2n-1£¨n¡ÊN*£©
£¨2£©½â£º
=
+
+¡+
=£¨1+2+22+¡+2n£©
+£¨1-1-1-¡-1£©
=£¨2n+1-1£©
+£¨1-n£©
£¬
ËùÒÔ£¬
=(2n+1-1 £¬ 1-n)£¬
Óɵ±n¡ÊN*ʱ£¬¡÷OA1An+1µÄ¶¥µã×ø±ê·Ö±ðΪ£º
O(0£¬0) ¡¢A1(1 £¬ 1) ¡¢An+1(2n+1-1 £¬ 1-n)µÃ£¬S¡÷OA1An+1=
=
(2n+1+n-2)=2n+
£¬
¼´bn=2n+
£¨n¡ÊN*£©
£¨3£©cn=
-2=
-2=
£¬
µ±n¡Ý2ʱ£¬cn-cn-1=
-
=
£¬
¡à1¡Ün¡Ü3ʱ£¬{cn}ÊǵÝÔöÊýÁУ¬n¡Ý5ʱ£¬{cn}ÊǵݼõÊýÁУ¬
c1£¼c2£¼c3=c4£¾c5£¾c6£¾¡£¾cn£¾¡£¬
¡àµ±n=3»òn=4ʱ£¬cnÈ¡µÃ×î´óÖµ£¬c3=c4=
£®
| OA1 |
| AnAn+1 |
µ±n=1ʱ£¬a1=s1=2 -1=1£¬
µ±n¡Ý2ʱ£¬sn-1=2n-1-1¢Ú
ÓÉ ¢Ù-¢ÚµÃ£ºan=2n-1-(2n-1-1)=2n-1£¬
ÓÖµ±n=1ʱ£¬a1=1·ûºÏÌâÒ⣬ËùÒÔan=2n-1£¨n¡ÊN*£©
£¨2£©½â£º
| OAn+1 |
| OA1 |
| A1A2 |
| AnAn+1 |
| i |
| j |
=£¨2n+1-1£©
| i |
| j |
ËùÒÔ£¬
| OAn+1 |
Óɵ±n¡ÊN*ʱ£¬¡÷OA1An+1µÄ¶¥µã×ø±ê·Ö±ðΪ£º
O(0£¬0) ¡¢A1(1 £¬ 1) ¡¢An+1(2n+1-1 £¬ 1-n)µÃ£¬S¡÷OA1An+1=
| 1 |
| 2 |
|
| 1 |
| 2 |
| n-2 |
| 2 |
¼´bn=2n+
| n-2 |
| 2 |
£¨3£©cn=
| bn |
| an |
2n+
| ||
| 2n-1 |
| n-2 |
| 2n |
µ±n¡Ý2ʱ£¬cn-cn-1=
| n-2 |
| 2n |
| n-3 |
| 2n-1 |
| 4-n |
| 2n |
¡à1¡Ün¡Ü3ʱ£¬{cn}ÊǵÝÔöÊýÁУ¬n¡Ý5ʱ£¬{cn}ÊǵݼõÊýÁУ¬
c1£¼c2£¼c3=c4£¾c5£¾c6£¾¡£¾cn£¾¡£¬
¡àµ±n=3»òn=4ʱ£¬cnÈ¡µÃ×î´óÖµ£¬c3=c4=
| 1 |
| 8 |
µãÆÀ£º±¾Ì⿼²éÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬¿¼²éÊýÁеÄͨÏîºÍǰnÏîºÍµÄ¹ØÏµ£¬¿¼²éÊýÁеĵ¥µ÷ÐÔµÄÔËÓ㬿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
| OA |
| OB |
| AB |
| OC |
| OA |
| OB |
| A¡¢2 | ||||
B¡¢
| ||||
| C¡¢1 | ||||
D¡¢
|
ÒÑÖªº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ£¨-2£¬2£©£¬µ¼º¯ÊýΪf¡ä£¨x£©=x2+2cosxÇÒf£¨0£©=0£¬ÔòÂú×ãf£¨1+x£©+f£¨x2-x£©£¾0µÄʵÊýxµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
| A¡¢£¨-¡Þ£¬+¡Þ£© | ||||
| B¡¢£¨-1£¬1£© | ||||
C¡¢(-¡Þ£¬1-
| ||||
D¡¢(-1£¬1-
|
ÈôµãA£¨-3£¬-4£©£¬B£¨6£¬3£©µ½Ö±Ïßl£ºax+y+1=0µÄ¾àÀëÏàµÈ£¬ÔòʵÊýaµÄֵΪ£¨¡¡¡¡£©
A¡¢
| ||||
B¡¢-
| ||||
C¡¢
| ||||
D¡¢-
|