题目内容

在△ABC中,
AB
2+
AB
BC
<0,则△ABC为(  )
A、锐角三角形
B、直角三角形
C、钝角三角形
D、锐角或钝角三角形
考点:三角形的形状判断
专题:解三角形
分析:利用向量的数量积的概念可得c<acosB,再利用正弦定理与两角和的正弦可化简得cosA<0,从而可判断△ABC的形状.
解答: 解:在△ABC中,∵
AB
2+
AB
BC
<0,
∴c2+accos(π-B)<0,又c>0,
∴c<acosB,
由正弦定理
a
sinA
=
c
sinC
得:sinC<sinAcosB,
∵△ABC中,A+B+C=π,
∴sin(A+B)=sinAcosB+cosAsinB<sinAcosB,
∴cosAsinB<0,cosAsinB>0,
∴cosA<0,
∴△ABC为钝角三角形,
故选:C.
点评:本题考查三角形的形状判断,考查平面向量的数量积的应用,突出考查正弦定理与两角和的正弦,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网