题目内容
f(x)=
,则f(
)+f(
)+…+f(
)= .
| 4x+1 | ||
4x-
|
| 1 |
| 2014 |
| 2 |
| 2014 |
| 2013 |
| 2014 |
考点:函数的值
专题:函数的性质及应用
分析:由已知得f(x)+f(1-x)=
+
=3,由此得到f(
)+f(
)+…+f(
)=3×1006+f(
),从而能求出结果.
| 4x+1 | ||
4x-
|
| 41-x+1 | ||
4
|
| 1 |
| 2014 |
| 2 |
| 2014 |
| 2013 |
| 2014 |
| 1 |
| 2 |
解答:
解:∵f(x)=
,
∴f(x)+f(1-x)=
+
=
+
=3,
∴f(
)+f(
)+…+f(
)
=3×1006+f(
)
=3018+
=
.
故答案为:
.
| 4x+1 | ||
4x-
|
∴f(x)+f(1-x)=
| 4x+1 | ||
4x-
|
| 41-x+1 | ||
4
|
=
| 4x+1 | ||
4x-
|
2+4x-
| ||
1+4x-
|
=3,
∴f(
| 1 |
| 2014 |
| 2 |
| 2014 |
| 2013 |
| 2014 |
=3×1006+f(
| 1 |
| 2 |
=3018+
| 2+1 |
| 1+1 |
=
| 6039 |
| 2 |
故答案为:
| 6039 |
| 2 |
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
已知sin
=m(|m|≤1),则cos(π+α)等于( )
| α |
| 2 |
| A、1-2m2 | ||
| B、2m2-1 | ||
C、
| ||
| D、2m-1 |
已知向量
=(1,m),
=(2,-m),若
⊥
,则实数m等于( )
| a |
| b |
| a |
| b |
A、-
| ||||
B、
| ||||
| C、0 | ||||
D、-
|