题目内容

a
b
c
为三个非零向量,且
a
+
b
+
c
=
0
,|
a
|=2,|
b
-
c
|=2,则|
b
|+|
c
|的最大值是
 
考点:向量的模
专题:平面向量及应用
分析:利用三个非零向量满足
a
+
b
+
c
=
0
,可得
b
+
c
=-
a
,因此|
b
+
c
|=|
a
|=2,由于|
b
-
c
|=2,可得2(|
b
|2+|
c
|2)=8,再利用(|
b
|+|
c
|)2≤2(|
b
|2+|
c
|2)即可得出.
解答: 解:∵三个非零向量满足
a
+
b
+
c
=
0

b
+
c
=-
a

∵|
b
+
c
|=|
a
|=2,∵|
b
-
c
|=2,∴2(|
b
|2+|
c
|2)=8,
∵(|
b
|+|
c
|)2≤2(|
b
|2+|
c
|2
∴|
b
|+|
c
|≤2
2

故答案为:2
2
点评:本题考查了向量模的计算公式和不等式的性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网