题目内容
执行如图的程序框图,则输出的S的值为( )

| A、1 | B、2 | C、3 | D、4 |
考点:程序框图
专题:算法和程序框图
分析:根据程序框图的功能是求S=1•log34•log45•log56•log67•log78•log89判断终止程序运行的k值,利用对数换底公式求得S值.
解答:
解:由程序框图得:第一次运行S=1•log34,k=4;
第二次运行S=1•log34•log45,k=5;
第三次运行S=1•log34•log45•log56,k=6;
…
直到k=9时,程序运行终止,此时S=1•log34•log45•log56•log67•log78•log89=
•
…
=
=2,
故选B.
第二次运行S=1•log34•log45,k=5;
第三次运行S=1•log34•log45•log56,k=6;
…
直到k=9时,程序运行终止,此时S=1•log34•log45•log56•log67•log78•log89=
| lg4 |
| lg3 |
| lg5 |
| lg4 |
| lg9 |
| lg8 |
| lg9 |
| lg3 |
故选B.
点评:本题考查了循环结构的程序框图,判断程序框图的运行功能是关键.
练习册系列答案
相关题目
将-330°化为弧度为( )
A、-
| ||
B、-
| ||
C、-
| ||
D、
|
已知函数f(x)=sin(ωx+
)(ω>0),若存在实数x0使得对任意的实数x,都有f(x0)≤f(x)≤f(x0+2013)成立,则ω的最小值是( )
| π |
| 4 |
A、
| ||
B、
| ||
C、
| ||
D、
|
从5双不同颜色的手套中任取4只,其中恰好有一双同色的取法有( )
| A、120 | B、240 |
| C、360 | D、72 |
已知集合A={x|(x-1)(x-4)>0},B={x|log2x<1},则集合(∁RA)∩B=( )
| A、{x|1≤x≤4} |
| B、{x|0<x<2} |
| C、{x|1≤x<2} |
| D、{x|2<x≤4} |
下列命题正确的是( )
A、若
| ||||||||
B、若
| ||||||||
C、向量
| ||||||||
| D、两向量相等的充要条件是它们的始点、终点相同 |