题目内容

3.圆x2+y2=8内有一点P0(-1,2),AB为过点P0且倾斜角为α的弦.
(1)当α=135°时,求AB的长;
(2)当弦被点P0平分时,写出直线AB的方程.

分析 (1)依题意直线AB的斜率为-1,直线AB的方程,根据圆心0(0,0)到直线AB的距离,由弦长公式求得AB的长.
(2)当弦AB被点P0平分时,AB和OP0垂直,故AB 的斜率为$\frac{1}{2}$,根据点斜式方程直线AB的方程.

解答 解:(1)依题意直线AB的斜率为-1,直线AB的方程为:y-2=-(x+1),
圆心0(0,0)到直线AB的距离为d=$\frac{\sqrt{2}}{2}$,则$\frac{1}{2}$|AB|=$\sqrt{8-\frac{1}{2}}$=$\frac{\sqrt{30}}{2}$,∴AB的长为$\sqrt{30}$;
(2)当弦AB被点P0平分时,AB和OP0垂直,故AB 的斜率为$\frac{1}{2}$,根据点斜式方程直线AB的方程为x-2y+5=0.

点评 本题考查用点斜式求直线方程,点到直线的距离公式,弦长公式的应用,求出圆心0(0,0)到直线AB的距离为d,是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网