题目内容

13.已知函数f(x)=e2-x+x,x∈[1,3],则下列说法正确的是(  )
A.函数f(x)的最大值为$3+\frac{1}{e}$B.函数f(x)的最小值为$3+\frac{1}{e}$
C.函数f(x)的最大值为3D.函数f(x)的最小值为3

分析 求出函数f(x)的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数f(x)的最小值即可.

解答 解:f(x)=e2-x+x,
f′(x)=-e2-x+1,
令f′(x)>0,解得:x>2,
令f′(x)<0,解得:x<2,
故f(x)在[1,2)递减,在(2,3]递增,
故f(x)的最小值是f(2)=3,
故选:D.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网