题目内容
12.某三棱锥的三视图如图所示,则该三棱锥的体积为( )| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | $\frac{4}{3}$ |
分析 由已知中的三视图可得:该几何体是一个以侧视图中右下角的三角形为底面的三棱锥,代入棱锥体积公式,可得答案.
解答 解:由已知中的三视图可得:该几何体是一个以侧视图中右下角的三角形为底面的三棱锥,
其底面面积S=$\frac{1}{2}$×2×2=2,高h=2,
故棱锥的体积V=$\frac{1}{3}×2×2$=$\frac{4}{3}$,
故选:D.
点评 本题考查的知识点是棱柱的体积和表面积,棱锥的体积和表面积,简单几何体的三视图,难度中档.
练习册系列答案
相关题目
2.函数$f(x)=ax-\frac{1}{2}{x^2}-4lnx$在区间[1,+∞)上为减函数,则实数a的取值范围是( )
| A. | (-∞,4) | B. | (-∞,4] | C. | (-∞,5) | D. | (-∞,5] |
3.某几何体的三视图如图所示,则其体积为( )

| A. | $\frac{{\sqrt{3}π}}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{{\sqrt{3}π}}{6}$ | D. | $\frac{{\sqrt{3}π}}{3}$ |
20.已知0<a1<a2<a3,则使得${({1-{a_i}x})^2}<1({i=1,2,3})$都成立的x的取值范围是( )
| A. | $({0,\frac{1}{a_3}})$ | B. | $({0,\frac{2}{a_3}})$ | C. | $({0,\frac{1}{a_1}})$ | D. | $({0,\frac{2}{a_1}})$ |
7.为了调查每天人们使用手机的时间,我校某课外兴趣小组在天府广场随机采访男性、女性用户各50 名,其中每天玩手机超过6小时的用户列为“手机控”,否则称其为“非手机控”,调查结果如下:
(1)根据以上数据,能否有60%的把握认为“手机控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取5人中“手机控”和“非手机控”的人数;
(3)从(2)中抽取的5人中再随机抽取3人,记这3人中“手机控”的人数为X,试求X的分布列与数学期望.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},其中n=a+b+c+d$.
参考数据:
| 手机控 | 非手机控 | 合计 | |
| 男性 | 26 | 24 | 50 |
| 女性 | 30 | 20 | 50 |
| 合计 | 56 | 44 | 100 |
(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取5人中“手机控”和“非手机控”的人数;
(3)从(2)中抽取的5人中再随机抽取3人,记这3人中“手机控”的人数为X,试求X的分布列与数学期望.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},其中n=a+b+c+d$.
参考数据:
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
| k0 | 0.456[ | 0.708 | 1.321 | 3.840 | 5.024 | 6.635 |
17.某几何体的三视图如图所示,则该几何体的体积为( )

| A. | ${\frac{5}{6}_{\;}}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
2.已知全集U=R,集合M={x||x|<1},N={y|y=2x,x∈R},则集合∁U(M∪N)等于( )
| A. | (-∞,-1] | B. | (-1,2) | C. | (-∞,-1]∪[2,+∞) | D. | [2,+∞) |