题目内容
抛物线y2=4x的焦点到双曲线
-
=1的渐近线的距离为( )
| x2 |
| 4 |
| y2 |
| 12 |
A、
| ||||
B、
| ||||
| C、1 | ||||
D、
|
考点:抛物线的简单性质,双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:先确定抛物线的焦点位置,进而可确定抛物线的焦点坐标,再由题中条件求出双曲线的渐近线方程,再代入点到直线的距离公式即可求出结论.
解答:
解:抛物线y2=4x的焦点在x轴上,且p=2,
∴抛物线y2=4x的焦点坐标为(1,0),
由题得:双曲线
-
=1的渐近线方程为
x±y=0,
∴F到其渐近线的距离d=
=
.
故选:A.
∴抛物线y2=4x的焦点坐标为(1,0),
由题得:双曲线
| x2 |
| 4 |
| y2 |
| 12 |
| 3 |
∴F到其渐近线的距离d=
| ||
|
| ||
| 2 |
故选:A.
点评:本题考查抛物线的性质,考查双曲线的基本性质,解题的关键是定型定位,属于基础题.
练习册系列答案
相关题目
(x+1)8的展开式中x2的系数是( )
| A、28 | ||
| B、56 | ||
C、
| ||
| D、1 |
直三棱柱ABC-A1B1C1中,若∠BAC=90°,则异面直线BA与AC1所成的角等于( )
| A、30° | B、45° |
| C、60° | D、90° |
已知0<a<b,且f(x)=
-log5x,则下列大小关系式成立的是( )
| 1 |
| 5x |
A、f(b)<f(
| ||||
B、f(
| ||||
C、f(
| ||||
D、f(a)<f(
|
设(1-3x)8=a0+a1x+a2x2+…+a8x8,则|a0|+|a1|+|a2|+…+|a8|的值为( )
| A、1 |
| B、28 |
| C、38 |
| D、48 |
已知{
,
,
}是空间的一组单位正交基底,而{
-
,
,
+
}是空间的另一组基底.若向量
在基底{
,
,
}下的坐标为(6,4,2),则向量
在基底{
-
,
,
+
}下的坐标为( )
| a |
| b |
| c |
| a |
| b |
| c |
| a |
| b |
| p |
| a |
| b |
| c |
| p |
| a |
| b |
| c |
| a |
| b |
| A、(1,2,5) |
| B、(5,2,1) |
| C、(1,2,3) |
| D、(3,2,1) |
数80100除以9所得余数是( )
| A、0 | B、8 | C、-1 | D、1 |