题目内容

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点F作圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于点P,若线段PF的中点为M,O为坐标原点,M在线段TP上,则|OM|-|MT|的值为(  )
A、b-aB、a-b
C、bD、不确定
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:如图所示,设F′是双曲线的右焦点,连接PF′.利用三角形的中位线定理和双曲线的定义可得:|OM|=
1
2
|PF′|=
1
2
(|PF|-2a)=
1
2
|PF|-a=|MF|-a,于是|OM|-|MT|=|MF|-|MT|-a=|FT|-a,连接OT,则OT⊥FT,在Rt△FOT中,|OF|=c,|OT|=a,可得|FT|=
|OF|2-|OT|2
=b.即可得出关系式.
解答: 解:如图所示,
设F′是双曲线的右焦点,连接PF′.
∵点M,O分别为线段PF,FF′的中点,
由三角形中位线定理得到:|OM|=
1
2
|PF′|=
1
2
(|PF|-2a)=
1
2
|PF|-a=|MF|-a,
∴|OM|-|MT|=|MF|-|MT|-a=|FT|-a,连接OT,因为PT是圆的切线,则OT⊥FT,
在Rt△FOT中,|OF|=c,|OT|=a,∴|FT|=
|OF|2-|OT|2
=b.
∴|OM|-|MT|=b-a.
故选A.
点评:本题考查了双曲线的定义和性质的运用,结合三角形的中位线定理、直线与圆相切的性质等知识,考查学生的计算能力和分析能力,是难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网