题目内容
已知数列{an}的前n项和为Sn,且Sn=n2an+2a1-1,其中n∈N*.
(Ⅰ)求an及Sn;
(Ⅱ)对任意n∈N*,试比较an与
的大小,并说明理由.
(Ⅰ)求an及Sn;
(Ⅱ)对任意n∈N*,试比较an与
| 1 |
| 2n |
考点:数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)a1=S1=a1+2a1-1,得a1=
.n≥2时,an=Sn-Sn-1=n2an-(n-1)2an-1,由此利用累乘法能求出an=
,从面求出Sn=
.
(Ⅱ)通过逐项比较和数学归纳法证明,推导出n=1时,an=
;1<n≤4时,an<
;当n≥5时,an>
.
| 1 |
| 2 |
| 1 |
| n(n+1) |
| n |
| n+1 |
(Ⅱ)通过逐项比较和数学归纳法证明,推导出n=1时,an=
| 1 |
| 2n |
| 1 |
| 2n |
| 1 |
| 2n |
解答:
解:(Ⅰ)∵数列{an}的前n项和为Sn,且Sn=n2an+2a1-1,其中n∈N*.
∴a1=S1=a1+2a1-1,解得a1=
.
∴n≥2时,Sn=n2an,①
Sn-1=(n-1)2an-1,②
①-②得:an=Sn-Sn-1=n2an-(n-1)2an-1,
整理,得
=
,
∴
=
,
=
,
=
,…,
=
,
把上面各式相乘,得
=
,
∴an=
.
∴Sn=n2an+2a1-1=
=
.
(Ⅱ)当n=1时,an=
,
=
,an=
,
当n=2时,an=
,
=
,an<
,
当n=3时,an=
,
=
,an<
,
当n=4时,an=
,
=
,an<
,
当n=5时,an=
,
=
,an>
,
∴当n≥5时,an>
.
下面用数学归纳法证明:
①当n=5时,an=
,
=
,an>
.
②假设n=k时,成立,则ak>
,即
>
,
∴2k>k(k+1),
当n=k+1时,ak+1=
,
∵(k+1)(k+2)=k(k+1)+2(k+1)<2k+2(k+1)<2k+1,
∴,ak+1=
<
.
∴当n≥5时,an>
.
综上:n=1时,an=
;1<n≤4时,an<
;当n≥5时,an>
.
∴a1=S1=a1+2a1-1,解得a1=
| 1 |
| 2 |
∴n≥2时,Sn=n2an,①
Sn-1=(n-1)2an-1,②
①-②得:an=Sn-Sn-1=n2an-(n-1)2an-1,
整理,得
| an |
| an-1 |
| n-1 |
| n+1 |
∴
| a2 |
| a1 |
| 1 |
| 3 |
| a3 |
| a2 |
| 2 |
| 4 |
| a4 |
| a3 |
| 3 |
| 5 |
| an |
| an-1 |
| n-1 |
| n+1 |
把上面各式相乘,得
| an |
| a1 |
| 2 |
| n(n+1) |
∴an=
| 1 |
| n(n+1) |
∴Sn=n2an+2a1-1=
| n2 |
| n(n+1) |
| n |
| n+1 |
(Ⅱ)当n=1时,an=
| 1 |
| 2 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 2n |
当n=2时,an=
| 1 |
| 6 |
| 1 |
| 2n |
| 1 |
| 4 |
| 1 |
| 2n |
当n=3时,an=
| 1 |
| 12 |
| 1 |
| 2n |
| 1 |
| 8 |
| 1 |
| 2n |
当n=4时,an=
| 1 |
| 20 |
| 1 |
| 2n |
| 1 |
| 16 |
| 1 |
| 2n |
当n=5时,an=
| 1 |
| 30 |
| 1 |
| 2n |
| 1 |
| 32 |
| 1 |
| 2n |
∴当n≥5时,an>
| 1 |
| 2n |
下面用数学归纳法证明:
①当n=5时,an=
| 1 |
| 30 |
| 1 |
| 2n |
| 1 |
| 32 |
| 1 |
| 2n |
②假设n=k时,成立,则ak>
| 1 |
| 2k |
| 1 |
| k(k+1) |
| 1 |
| 2k |
∴2k>k(k+1),
当n=k+1时,ak+1=
| 1 |
| (k+1)(k+2) |
∵(k+1)(k+2)=k(k+1)+2(k+1)<2k+2(k+1)<2k+1,
∴,ak+1=
| 1 |
| (k+1)(k+2) |
| 1 |
| 2k+1 |
∴当n≥5时,an>
| 1 |
| 2n |
综上:n=1时,an=
| 1 |
| 2n |
| 1 |
| 2n |
| 1 |
| 2n |
点评:本题考查数列的通面公式和前n项和公式的求法,考查两个式子的大小的比较,解题时要注意数学归纳法的合理运用.
练习册系列答案
相关题目