题目内容

已知在正整数数列{an}中,其前n项的和为Sn且满足Sn=
1
8
(an+2)2
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=
1
anan+1
,求数列{bn}的前n项的和Tn
考点:数列的求和,数列递推式
专题:计算题,等差数列与等比数列
分析:(Ⅰ)令n=1,易求a1=2,当n≥2时,an=Sn-Sn-1=
1
8
(an+2)2-
1
8
(an-1+2)2=
1
8
(an+an-1+4)(an-an-1)
,化简可得an-an-1=4,从而判断{an}是等差数列,由等差数列的通项公式可求an
(Ⅱ)先求出bn=
1
8
1
2n-1
-
1
2n+1
),利用裂相消法可求得Tn
解答: 解:(Ⅰ)当n=1时,S1=a1=
1
8
(a1+2)2
,解得a1=2;
当n≥2时,an=Sn-Sn-1=
1
8
(an+2)2-
1
8
(an-1+2)2=
1
8
(an+an-1+4)(an-an-1)

a
2
n
-
a
2
n-1
-4(an+an-1)=0
,即(an+an-1)(an-an-1-4)=0,
又数列{an}的各项均为正整数,∴an>0,∴an-an-1=4,
故数列{an}是首项为2,公差为4的等差数列.
∴an=2+4(n-1)=4n-2.
(Ⅱ)bn=
1
anan+1
=
1
(4n-2)(4n+2)
=
1
4(2n-1)(2n+1)
=
1
8
(
1
2n-1
-
1
2n+1
)

故Tn=b1+b2+…+bn=
1
8
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]
=
1
8
(1-
1
2n+1
)=
n
4(2n+1)
点评:该题考查由递推式求数列通项、等差数列的通项公式、数列求和,考查学生的推理论证能力,裂项相消法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网