题目内容
任取实数a、b∈[-1,1],则a、b满足|a-2b|≤2的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
考点:几何概型
专题:概率与统计
分析:用不等式组表示平面区域,利用几何概型的概率公式,分别求出对应区域的面积,即可得到结论.
解答:
解:∵a、b∈[-1,1],
∴-1≤a≤1,-1≤b≤1,对应区域的面积为2×2=4,
不等式|a-2b|≤2对应的区域如图(阴影部分):
当a=-1时有a-2b=-2得b=
,
则阴影部分的面积为4-2×
×(1-
)×1=4-
=
,
由几何概型的概率公式可得a、b满足|a-2b|≤2的概率P=
=
,
故选:D.
∴-1≤a≤1,-1≤b≤1,对应区域的面积为2×2=4,
不等式|a-2b|≤2对应的区域如图(阴影部分):
当a=-1时有a-2b=-2得b=
| 1 |
| 2 |
则阴影部分的面积为4-2×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 7 |
| 2 |
由几何概型的概率公式可得a、b满足|a-2b|≤2的概率P=
| ||
| 4 |
| 7 |
| 8 |
故选:D.
点评:本题主要考查几何概型的应用,利用不等式表示平面区域,求出相应的平面区域,求出相应的面积是解决本题的关键.
练习册系列答案
相关题目
已知f(x)、g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)-f(x)g′(x)<0,
=ax,
+
=
,则关于x的方程abx2+
x+
=0(b∈(0,1))有两个不同实根的概率为( )
| f(x) |
| g(x) |
| f(1) |
| g(1) |
| f(-1) |
| g(-1) |
| 5 |
| 2 |
| 2 |
| 5 |
| 2 |
A、
| ||
B、
| ||
C、
| ||
D、
|
已知函数f(x)=
下列是关于函数y=f[f(x)]+1的零点个数的4个判断:
①当k>0时,有3个零点;
②当k<0时,有2个零点;
③当k>0时,有4个零点;
④当k<0时,有1个零点.
则正确的判断是( )
|
①当k>0时,有3个零点;
②当k<0时,有2个零点;
③当k>0时,有4个零点;
④当k<0时,有1个零点.
则正确的判断是( )
| A、①④ | B、②③ | C、①② | D、③④ |
某三棱锥的三视图如图所示,该三棱锥的体积是( )

A、18
| ||
B、36
| ||
C、12
| ||
D、24
|
已知O是△ABC所在平面内一点,且2
+
+
=0,则△ABO与△ABC的面积之比为( )
| OA |
| OB |
| OC |
A、
| ||
B、
| ||
C、
| ||
D、
|