题目内容

已知函数f(x)=log2
x+1
x-1
+log2(x-1)+log2(p-x).
(1)求函数f(x)的定义域;
(2)求函数f(x)的值域.
考点:对数函数的图像与性质,对数的运算性质
专题:函数的性质及应用
分析:(1)由题意解不等式组,求出即可,(2)分别讨论当1<p<3时,当p≥3时的情况,从而求出函数的值域.
解答: 解:(1)由题意得:
x+1
x-1
>0
x-1>0
p-x>
,解得:1<x<p,
∴函数f(x)的定义域为(1,p).
(2)①当
p-1
2
<1
p>1
,即1<p<3时,t在(1,p)上单调减,g(p)<t<g(1),即0<t<2p-2,
∴f(x)<1+log2(p-1),函数f(x)的值域为(-∞,1+log2(p-1));
②当
1≤
p-1
2
p+1
2
p>1
即p≥3时,g(p)<t≤g(
p-1
2
)
,即0<t≤
(p+1)2
4

∴f(x)≤2log2(p+1)-2,函数f(x)的值域为(-∞,2log2(p+1)-2).
综上:当1<p<3时,函数f(x)的值域为(-∞,1+log2(p-1));
当p≥3时,函数f(x)的值域为(-∞,2log2(p+1)-2)
点评:本题考查了对数函数的图象及性质,考查分类讨论思想,是一道中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网