题目内容
14.有两个问题:①有1000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3人参加座谈会.则下列说法中正确的是( )| A. | ①随机抽样法②系统抽样法 | B. | ①分层抽样法②随机抽样法 | ||
| C. | ①系统抽样法②分层抽样法 | D. | ①分层抽样法②系统抽样法 |
分析 简单随机抽样是从总体中逐个抽取;系统抽样是事先按照一定规则分成几部分;分层抽样是将总体分成几层,再抽取.
解答 解:1000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,总体的个体差异较大,可采用分层抽样;从20名学生中选出3名参加座谈会,总体个数较少,可采用抽签法.
故选B.
点评 抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样.
练习册系列答案
相关题目
5.中央电视台为了调查近三年的春晚节目中各类节目的受欢迎程度,用分层抽样的方法,从2014年至2016年春晚的50个歌舞类节目,40个戏曲类节目,30个小品类节目中抽取样本进行调查,若样本中的歌舞类和戏曲类节目共有27个,则样本容量为( )
| A. | 36 | B. | 35 | C. | 32 | D. | 30 |
2.设实数x,y满足条件$\left\{\begin{array}{l}{x-y+2≥0}\\{2x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最大值为 12,则$\frac{3}{a}$+$\frac{4}{b}$的最小值为( )
| A. | $\frac{49}{6}$ | B. | $\frac{25}{6}$ | C. | $\frac{8}{3}$ | D. | 4 |
9.设全集U=R,集合A={x|x≥0},B={x|(x-3)(x+1)<0},则(∁UA)∩B=( )
| A. | {x|-3<x<0} | B. | {x|-1<x<0} | C. | {x|0<x<1} | D. | {x|0<x<3} |
6.3x=4,则x=( )
| A. | log43 | B. | 64 | C. | log34 | D. | 81 |