题目内容
已知函数f(x)=
,若数列{an}(n∈N*)满足:a1=1,an+1=f(an)
(1)设bn=
,求证数列{bn}是等差数列;
(2)求数列{an}的通项公式;
(3)设数列{cn}满足:cn=
,求数列{cn}的前n项的和Sn.
| x |
| x+1 |
(1)设bn=
| 1 |
| an |
(2)求数列{an}的通项公式;
(3)设数列{cn}满足:cn=
| 2n |
| an |
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)由已知条件推导出an=
,从而得到bn=
=
=1+
,由此能够证明数列{bn}是等差数列.
(2)由(1)知
-
=1,a1=1,从而得到
=n,由此能求出an=
.
(3)由Cn=2nn,利用错位相减求和法能求出数列{cn}的前n项的和Sn.
| an-1 |
| an-1+1 |
| 1 |
| an |
| an-1+1 |
| an-1 |
| 1 |
| an-1 |
(2)由(1)知
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| an |
| 1 |
| n |
(3)由Cn=2nn,利用错位相减求和法能求出数列{cn}的前n项的和Sn.
解答:
(1)证明:∵数f(x)=
,数列{an}(n∈N*)满足:a1=1,an+1=f(an),
∴an+1=
,∴an=
,
∴bn=
=
=1+
,
∴bn-bn-1=
-
=1,
∴数列{bn}是等差数列.
(2)解:由(1)知
-
=1,a1=1,
∴{
}是首项为1,公差为1的等差数列,
∴
=n,∴an=
.
(3)解:∵an=
,cn=
,∴Cn=2nn,
∴Sn=1•2+2•22+3•23+…+n•2n,①
2Sn=1•22+2•23+3•24+…+n•2n+1,②
①-②,得:-Sn=2+22+23+…+2n-n•2n+1
=
-n•2n+1
=-2-(n-1)•2n+1,
∴Sn=(n-1)2n+1+2.
| x |
| x+1 |
∴an+1=
| an |
| an+1 |
| an-1 |
| an-1+1 |
∴bn=
| 1 |
| an |
| an-1+1 |
| an-1 |
| 1 |
| an-1 |
∴bn-bn-1=
| 1 |
| an |
| 1 |
| an-1 |
∴数列{bn}是等差数列.
(2)解:由(1)知
| 1 |
| an |
| 1 |
| an-1 |
∴{
| 1 |
| an |
∴
| 1 |
| an |
| 1 |
| n |
(3)解:∵an=
| 1 |
| n |
| 2n |
| an |
∴Sn=1•2+2•22+3•23+…+n•2n,①
2Sn=1•22+2•23+3•24+…+n•2n+1,②
①-②,得:-Sn=2+22+23+…+2n-n•2n+1
=
| 2(1-2n) |
| 1-2 |
=-2-(n-1)•2n+1,
∴Sn=(n-1)2n+1+2.
点评:本题考查等差数列的证明,考查数列的通项公式的求法,考查数列的通项公式的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目