题目内容

7.如图,在平面四边形ABCD中,$\overrightarrow{BA}•\overrightarrow{BC}=32$.
(1)若$\overrightarrow{BA}$与$\overrightarrow{BC}$的夹角为30°,求△ABC的面积S△ABC
(2)若$|{\overrightarrow{AC}}|=4,O$为AC的中点,G为△ABC的重心(三条中线的交点),且$\overrightarrow{OG}$与$\overrightarrow{OD}$互为相反向量,求$\overrightarrow{AD}•\overrightarrow{CD}$的值.

分析 (1)由条件利用两个向量的数量积的定义,求得BA•BC的值,可得△ABC的面积S△ABC的值.
(2)以O为原点,AC所在直线为x轴,建立如图所示的平面直角坐标系,设D(x,y),由条件求得点B的坐标,从而求得$\overrightarrow{AD}•\overrightarrow{CD}$的值.

解答 解:(1)∵$\overrightarrow{BA}•\overrightarrow{BC}=32$,∴BA•BCcos30°=32,
∴$BA•BC=\frac{32}{{cos{{30}°}}}=\frac{{64\sqrt{3}}}{3}$,
∴${S_{△ABC}}=\frac{1}{2}BA•BCsin{30°}=\frac{1}{2}×\frac{{64\sqrt{3}}}{3}×\frac{1}{2}=\frac{{16\sqrt{3}}}{3}$.
(2)以O为原点,AC所在直线为x轴,建立如图所示的
平面直角坐标系.
则A(-2,0),C(2,0),设D(x,y),
则$\overrightarrow{OD}=({x,y})$,因为$\overrightarrow{OG}$与$\overrightarrow{OD}$互为相反向量,所以$\overrightarrow{OG}=({-x,-y})$.因为G为△ABC的重心,所以$\overrightarrow{OB}=3\overrightarrow{OG}=({-3x,-3y})$,
即B(-3x,-3y),∴$\overrightarrow{BA}=({3x-2,3y}),\overrightarrow{BC}=({3x+2,3y})$,
因此$\overrightarrow{BA}•\overrightarrow{BC}=9{x^2}-4+9{y^2}$=32,即x2+y2=4.
∴$\overrightarrow{AD}•\overrightarrow{CD}=({x+2,y})•({x-2,y})={x^2}+{y^2}-4=0$.

点评 本题主要考查两个向量的数量积的定义,用坐标法求两个向量的数量积,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网