题目内容
12.已知实数x,y满足$\left\{\begin{array}{l}x-y-1≤0\\ x+3≥0\\ y-2≤0\end{array}\right.$,则$\frac{y-2}{x-4}$的最大值为$\frac{6}{7}$.分析 作出不等式组对应的平面区域,利用斜率的几何意义进行求解即可.
解答 解:作出不等式组对应的平面区域如图:
$\frac{y-2}{x-4}$的几何意义是区域内的点到定点D(4,2)的斜率,![]()
由图象知AD的斜率最大,
由$\left\{\begin{array}{l}{x+3=0}\\{x-y-1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=-3}\\{y=-4}\end{array}\right.$,即A(-3,-4),
此时AD的斜率k=$\frac{y-2}{x-4}$=$\frac{-4-2}{-3-4}$=$\frac{6}{7}$,
故答案为:$\frac{6}{7}$.
点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义结合直线的斜率公式是解决问题的关键,利用数形结合是解决问题的基本方法.
练习册系列答案
相关题目
2.△ABC是球的一个截面的内接三角形,其中AB=18,BC=24、AC=30,球心到这个截面的距离为球半径的一半,则球的半径等于( )
| A. | 10 | B. | $10\sqrt{3}$ | C. | 15 | D. | $15\sqrt{3}$ |
4.已知F1,F2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的两个焦点,PQ是经过F1且垂直于x轴的双曲线的弦,若∠PF2Q=90°,则双曲线的离心率为( )
| A. | 2 | B. | $2\sqrt{2}$ | C. | $\sqrt{2}-1$ | D. | $1+\sqrt{2}$ |
1.
如图,在平行四边形ABCD中,$∠BAD=\frac{π}{3}$,AB=2,AD=1,若M、N分别是边BC、CD上的点,且满足$\frac{BM}{BC}=\frac{NC}{DC}=λ$,其中λ∈[0,1],则$\overrightarrow{AM}•\overrightarrow{AN}$的取值范围是( )
| A. | [0,3] | B. | [1,4] | C. | [2,5] | D. | [1,7] |
14.方程xy2+x2y=1所表示的曲线( )
| A. | 关于x轴对称 | B. | 关于y轴对称 | C. | 关于原点对称 | D. | 关于直线y=x对称 |