题目内容

2.已知函数f(x)的定义域为[0,2],则函数$g(x)=f({2x})+\sqrt{8-{2^x}}$的定义域为(  )
A.[0,1]B.[0,2]C.[1,2]D.[1,3]

分析 由已知f(x)的定义域求得f(2x)的定义域,结合根式内部的代数式大于等于0求得答案.

解答 解:∵函数f(x)的定义域为[0,2],
∴由0≤2x≤2,解得0≤x≤1.
∴由$\left\{\begin{array}{l}{0≤x≤1}\\{8-{2}^{x}≥0}\end{array}\right.$,解得0≤x≤1.
∴函数$g(x)=f({2x})+\sqrt{8-{2^x}}$的定义域为[0,1].
故选:A.

点评 本题考查函数的定义域及其求法,关键是掌握该类问题的求解方法,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网