题目内容

函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值(  )
A、2个B、1个C、3个D、4个
考点:利用导数研究函数的极值
专题:导数的综合应用
分析:如图所示,由导函数f′(x)在(a,b)内的图象和极值的定义可知:函数f(x)只有在点B处取得极小值.
解答: 解:如图所示,
由导函数f′(x)在(a,b)内的图象可知:
函数f(x)只有在点B处取得极小值,
∵在点B的左侧f′(x)<0,右侧f′(x)>0,且f′(xB)=0.
∴函数f(x)在点B处取得极小值.
故选:B.
点评:本题考查了利用导数研究函数的单调性极值,考查了数形结合的思想方法,考查了推理能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网