题目内容
10.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为( )| A. | 120 | B. | 240 | C. | 24 | D. | 48 |
分析 本题需要分步计数,首先选择2和4排在末位时,共有A21种结果,再从余下的其余三位数从余下的四个数中任取三个有A43种结果,根据由分步计数原理得到符合题意的偶数.
解答 解:由题意知本题需要分步计数,
2和4排在末位时,共有A21=2种排法,
其余三位数从余下的四个数中任取三个有A43=4×3×2=24种排法,
根据由分步计数原理得到符合题意的偶数共有2×24=48(个).
故选D.
点评 本题考查分步计数原理,是一个数字问题,这种问题是最典型的排列组合问题,经常出现限制条件,并且限制条件变化多样.
练习册系列答案
相关题目
20.下面使用类比推理正确的是( )
| A. | 由实数运算“(ab)t=a(bt)”类比到“($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$)” | |
| B. | 由实数运算“(ab)t=at+bt”类比到“($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow{b}$•$\overrightarrow{c}$” | |
| C. | 由实数运算“|ab|=|a||b|”类比到“|$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|” | |
| D. | 由实数运算“$\frac{ac}{bc}$=$\frac{a}{b}$”类比到“$\frac{\overrightarrow{a}•\overrightarrow{c}}{\overrightarrow{b}•\overrightarrow{c}}$=$\frac{\overrightarrow{a}}{\overrightarrow{b}}$” |
2.已知a,b,m∈R,则下面推理中正确的是( )
| A. | a>b⇒$\frac{a}{b}$>1 | B. | a>b⇒am2>bm2 | ||
| C. | a3>b3,ab>0⇒$\frac{1}{a}$<$\frac{1}{b}$ | D. | a2>b2,ab>0⇒$\frac{1}{a}$<$\frac{1}{b}$ |
19.已知Sn为数列{an}的前n项和,若an(4+cosnπ)=n(2-cosnπ),则S20=( )
| A. | 31 | B. | 122 | C. | 324 | D. | 484 |