题目内容
15.在△ABC中,已知a=5,b=4,cos(A-B)=$\frac{31}{32}$,则cosC=$\frac{1}{8}$,AB=6.分析 由已知得A>B.在BC上取D,使得BD=AD,连接AD,设BD=x,则AD=x,DC=5-x.在△ADC中,cos∠DAC=cos(A-B)=$\frac{31}{32}$,由余弦定理求出x=4,从而cosC=$\frac{1}{2}$•$\frac{CD}{AC}$=$\frac{1}{8}$,再由余弦定理能求出AB.
解答
解:∵在△ABC中,a=5,b=4,cos(A-B)=$\frac{31}{32}$,
∴a>b,∴A>B.在BC上取D,使得BD=AD,连接AD,
设BD=x,则AD=x,DC=5-x.
在△ADC中,cos∠DAC=cos(A-B)=$\frac{31}{32}$,
由余弦定理得:(5-x)2=x2+42-2x•4•$\frac{31}{32}$,
即:25-10x=16-$\frac{31}{4}$x,
解得:x=4.
∴在△ADC中,AD=AC=4,CD=1,
∴cosC=$\frac{1}{2}$•$\frac{CD}{AC}$=$\frac{1}{8}$,
∴AB=$\sqrt{{a}^{2}+{b}^{2}-2abcosC}$=$\sqrt{25+16-2×5×4×\frac{1}{8}}$=6.
故答案为:$\frac{1}{8}$,6.
点评 本题考查三角形角的余弦值及边长的求法,考查余弦定理、三角形性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
练习册系列答案
相关题目
17.已知函数f(x)=$\left\{\begin{array}{l}{x+2,x<0}\\{{x}^{2}-3x+2,x≥0}\end{array}\right.$,函数g(x)=f(x)-a恰有三个不同的零点,则实数a的取值范围为( )
| A. | (-∞,-$\frac{1}{4}$] | B. | (-$\frac{1}{4}$,2) | C. | [2,+∞) | D. | [0,2) |
18.已知实数a满足-3<a<4,函数f(x)=lg(x2+ax+1)的值域为R的概率为P1,定义域为R的概率为P2,则( )
| A. | P1>P2 | B. | P1=P2 | ||
| C. | P1<P2 | D. | P1与P2的大小不确定 |
7.已知三棱锥P-ABC的四个顶点均在同一个球面上,底面△ABC满足AB=BC=$\sqrt{3}$,AC=3,若该三棱锥体积的最大值为$\frac{3\sqrt{3}}{4}$,则其外接球的半径为( )
| A. | 1 | B. | 2 | C. | 3 | D. | $\frac{2}{3}$ |
4.
《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示(网格纸上正方形的边长为1),则该“堑堵”的表面积为( )
| A. | 8 | B. | 16+8$\sqrt{2}$ | C. | 16+16$\sqrt{2}$ | D. | 24+16$\sqrt{2}$ |