ÌâÄ¿ÄÚÈÝ
4£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=5cos¦Õ}\\{y=\frac{5\sqrt{22}}{22}sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌÊǦÑsin£¨$¦È-\frac{¦Ð}{6}$£©=0£¬ÇÒÇúÏßC1ÓëÇúÏßC2ÔÚµÚÒ»ÏóÏ޵Ľ»µãΪA£¬³¤·½ÐÎABCDµÄ¶¥µã¶¼ÔÚC1ÉÏ£¨ÆäÖÐA¡¢B¡¢C¡¢DÒÀ´ÎÄæÊ±Õë´ÎÐòÅÅÁУ©ÇóA¡¢B¡¢C¡¢DµÄÖ±½Ç×ø±ê£®·ÖÎö ÓÉÇúÏßC1µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=5cos¦Õ}\\{y=\frac{5\sqrt{22}}{22}sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬ÀûÓÃcos2¦Õ+sin2¦Õ=1¼´¿É»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌÊǦÑsin£¨$¦È-\frac{¦Ð}{6}$£©=0£¬»¯Îª$\frac{\sqrt{3}}{2}¦Ñsin¦È-\frac{1}{2}¦Ñcos¦È$=0£¬ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$¼´¿ÉµÃ³öÖ±½Ç×ø±ê·½³Ì£¬ÁªÁ¢½â³ö¼´¿ÉµÃ³ö£®
½â´ð ½â£ºÓÉÇúÏßC1µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=5cos¦Õ}\\{y=\frac{5\sqrt{22}}{22}sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬»¯ÎªÖ±½Ç×ø±ê·½³Ì£º$\frac{{x}^{2}}{25}$+$\frac{22{y}^{2}}{25}$=1£¬
ÇúÏßC2µÄ¼«×ø±ê·½³ÌÊǦÑsin£¨$¦È-\frac{¦Ð}{6}$£©=0£¬»¯Îª$\frac{\sqrt{3}}{2}¦Ñsin¦È-\frac{1}{2}¦Ñcos¦È$=0£¬¿ÉµÃ£º$\sqrt{3}$y-x=0£®
ÁªÁ¢$\left\{\begin{array}{l}{x-\sqrt{3}y=0}\\{{x}^{2}+22{y}^{2}=25}\end{array}\right.$£¬½»µã$\left\{\begin{array}{l}{x=\sqrt{3}}\\{y=-1}\end{array}\right.$£¬»ò$\left\{\begin{array}{l}{x=-\sqrt{3}}\\{y=-1}\end{array}\right.$£¬
È¡µãA$£¨\sqrt{3}£¬1£©$£®
ÓÉÌâÒâ¿ÉµÃ£ºB$£¨-\sqrt{3}£¬1£©$£¬C$£¨-\sqrt{3}£¬-1£©$£¬D$£¨\sqrt{3}£¬-1£©$£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±ÏßÓëÍÖÔ²µÄ½»µã£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | 1-2a | B£® | 2a-1 | C£® | £¨$\frac{1}{2}$£©a-1 | D£® | 1-£¨$\frac{1}{2}$£©a |
| A£® | 16 | B£® | 14 | C£® | 12 | D£® | 10 |
| A£® | $\frac{2}{11}$ | B£® | $\frac{1}{4}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{11}{2}$ |
| A£® | Ïò×óÆ½ÒÆ$\frac{¦Ð}{4}$µ¥Î» | B£® | ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{4}$µ¥Î» | C£® | Ïò×óÆ½ÒÆ$\frac{¦Ð}{8}$µ¥Î» | D£® | ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{8}$µ¥Î» |
| A£® | {x|0£¼x£¼4} | B£® | {x|1£¼x£¼7} | C£® | {x|1£¼x£¼4} | D£® | {x|4£¼x£¼7} |