题目内容

13.已知抛物线的顶点在原点,焦点在x轴上,△ABC三个顶点都在抛物线上,且△ABC的重心为抛物线的焦点,若BC边所在直线的方程为4x+y-20=0,则抛物线方程为y2=16x.

分析 设抛物线的方程为y2=2px,将直线的方程代入抛物线的方程,消去y得到关于x的一元二次方程,再结合直线l与抛物线相交于两个不同的点得到根的判别式大于0,结合根与系数的关系利用重心公式即可求得p值,从而解决问题.

解答 解:设抛物线的方程为y2=2px.

由$\left\{\begin{array}{l}4x+y-20=0\\{y}^{2}=2px\end{array}\right.$可得2y2+py-20p=0.
由△>0,有p>0,或p<-160.
设B(x1,y1),C(x2,y2),则y1+y2=-$\frac{p}{2}$,
∴x1+x2=(5-$\frac{{y}_{1}}{4}$)+(5-$\frac{{y}_{2}}{4}$)=10-$\frac{1}{4}$(y1+y2)=10+$\frac{p}{8}$,
设A(x3,y3),由△ABC的重心为F($\frac{p}{2}$,0),则$\frac{{x}_{1}+{x}_{2}+{x}_{3}}{3}$=$\frac{p}{2}$,$\frac{{y}_{1}+{y}_{2}+{y}_{3}}{3}$=0,
∴x3=$\frac{11p}{8}$-10,y3=$\frac{p}{2}$.
∵点A在抛物线上,
∴($\frac{p}{2}$)2=2p($\frac{11p}{8}$-10),
∴p=8.
∴抛物线的方程为y2=16x,
故答案为:y2=16x

点评 本题考查的知识点是抛物线的标准方程,直线与圆锥曲线的位置关系,重心坐标公式,难度中档.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网