题目内容

已知数列{an}满足:a1=6,an+1=
n+2
n
an+(n+1)(n+2).
(1)若dn=
an
n(n+1)
,求数列{dn}的通项公式;
(2)若bn=
an
(n+1)(n+2)
2n+1
,记数列{bn}的前n项和为Tn,求Tn
考点:数列递推式,数列的求和
专题:等差数列与等比数列
分析:(1)把an+1=
n+2
n
an+(n+1)(n+2),两边同除(n+1)(n+2),得到{
an
n(n+1)
}是首项为3、公差为1的等差数列,由此能求出dn
(2)由(1)得an=n(n+1)(n+2),bn=n•2n+1,由此利用错位相减法能求出数列{bn}的前n项和为Tn
解答: 解:(1)∵数列{an}满足:a1=6,an+1=
n+2
n
an+(n+1)(n+2),
∴等式两边同除(n+1)(n+2),得:
an+1
(n+1)(n+2)
=
an
n(n+1)
+1

a1
1×2
=3
,∴{
an
n(n+1)
}是首项为3、公差为1的等差数列,
∴dn=
an
n(n+1)
=3+(n-1)=n+2.
(2)由(1)得an=n(n+1)(n+2),
∴bn=
an
(n+1)(n+2)
2n+1
=n•2n+1
∴Tn=1×22+2×23+3×24+…+n×2n+1,①
2Tn=1×23+2×24+3×25+…+n×2n+2,②
①-②,得-Tn=22+23+24+25+…+2n+1-n×2n+2
=
4(1-2n)
1-2
-n×2n+2

=2n+2-4-n×2n+2 
=-4-(n-1)×2n+2
Tn =(n-1)•2n+2+4.
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网