题目内容
已知数列{an}满足:a1=6,an+1=
an+(n+1)(n+2).
(1)若dn=
,求数列{dn}的通项公式;
(2)若bn=
•2n+1,记数列{bn}的前n项和为Tn,求Tn.
| n+2 |
| n |
(1)若dn=
| an |
| n(n+1) |
(2)若bn=
| an |
| (n+1)(n+2) |
考点:数列递推式,数列的求和
专题:等差数列与等比数列
分析:(1)把an+1=
an+(n+1)(n+2),两边同除(n+1)(n+2),得到{
}是首项为3、公差为1的等差数列,由此能求出dn.
(2)由(1)得an=n(n+1)(n+2),bn=n•2n+1,由此利用错位相减法能求出数列{bn}的前n项和为Tn.
| n+2 |
| n |
| an |
| n(n+1) |
(2)由(1)得an=n(n+1)(n+2),bn=n•2n+1,由此利用错位相减法能求出数列{bn}的前n项和为Tn.
解答:
解:(1)∵数列{an}满足:a1=6,an+1=
an+(n+1)(n+2),
∴等式两边同除(n+1)(n+2),得:
=
+1,
又
=3,∴{
}是首项为3、公差为1的等差数列,
∴dn=
=3+(n-1)=n+2.
(2)由(1)得an=n(n+1)(n+2),
∴bn=
•2n+1=n•2n+1,
∴Tn=1×22+2×23+3×24+…+n×2n+1,①
2Tn=1×23+2×24+3×25+…+n×2n+2,②
①-②,得-Tn=22+23+24+25+…+2n+1-n×2n+2
=
-n×2n+2
=2n+2-4-n×2n+2 ,
=-4-(n-1)×2n+2,
∴Tn =(n-1)•2n+2+4.
| n+2 |
| n |
∴等式两边同除(n+1)(n+2),得:
| an+1 |
| (n+1)(n+2) |
| an |
| n(n+1) |
又
| a1 |
| 1×2 |
| an |
| n(n+1) |
∴dn=
| an |
| n(n+1) |
(2)由(1)得an=n(n+1)(n+2),
∴bn=
| an |
| (n+1)(n+2) |
∴Tn=1×22+2×23+3×24+…+n×2n+1,①
2Tn=1×23+2×24+3×25+…+n×2n+2,②
①-②,得-Tn=22+23+24+25+…+2n+1-n×2n+2
=
| 4(1-2n) |
| 1-2 |
=2n+2-4-n×2n+2 ,
=-4-(n-1)×2n+2,
∴Tn =(n-1)•2n+2+4.
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目