题目内容
已知数列{an}的前n项和Sn满足:Sn=
(an-1)(a为常数,且a≠0,a≠1).
(Ⅰ)求{an}的通项公式;
(Ⅱ)若a=
,设bn=
+
,数列{bn}的前n项和为Tn.求证:Tn>2n-
.
| a |
| a-1 |
(Ⅰ)求{an}的通项公式;
(Ⅱ)若a=
| 1 |
| 3 |
| 1 |
| 1+an |
| 1 |
| 1-an+1 |
| 1 |
| 3 |
考点:数列的求和,等差数列的通项公式,等比数列的通项公式,数列与不等式的综合
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出{an}是首项为a,公比为a的等比数列,由此能求出{an}的通项公式.
(Ⅱ)由a=
,得an=(
)n,bn =2-(
-
)>2-(
-
),由此利用裂项求和法能证明Tn>2n-
.
(Ⅱ)由a=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3n+1 |
| 1 |
| 3n+1-1 |
| 1 |
| 3n |
| 1 |
| 3n+1 |
| 1 |
| 3 |
解答:
(Ⅰ)解:∵Sn=
(an-1),
∴n=1时,S1=a1=
(a1-1),解得a1 =a.…(2分)
当n≥2时,有an=Sn-Sn-1
=
an-
an-1,
解得
=a,…(4分)
∴{an}是首项为a,公比为a的等比数列.…(5分)
∴an=a•an-1=an.…(6分)
(Ⅱ)证明:∵a=
,∴an=(
)n,…(7分)
∴bn =
+
=
+
=
+
=1-
+1+
=2-(
-
),…(9分)
由
<
,
>
,
得
-
<
-
,…(11分)
∴bn=2-(
-
)>2-(
-
),…(12分)
∴Tn =b1+b2+…+bn
>[2-(
-
)]+[2-(
-
)]+…+[2-(
-
)]
=2n-[(
-
)+(
-
)+…+(
-
)]
=2n-(
-
)>2n-
.
即Tn>2n-
.…(14分)
| a |
| a-1 |
∴n=1时,S1=a1=
| a |
| a-1 |
当n≥2时,有an=Sn-Sn-1
=
| a |
| a-1 |
| a |
| a-1 |
解得
| an |
| an-1 |
∴{an}是首项为a,公比为a的等比数列.…(5分)
∴an=a•an-1=an.…(6分)
(Ⅱ)证明:∵a=
| 1 |
| 3 |
| 1 |
| 3 |
∴bn =
| 1 | ||
1+(
|
| 1 | ||
1-(
|
=
| 3n |
| 3n+1 |
| 3n+1 |
| 3n+1-1 |
=
| 3n+1-1 |
| 3n+1 |
| 3n+1-1+1 |
| 3n+1-1 |
=1-
| 1 |
| 3n+1 |
| 1 |
| 3n+1-1 |
=2-(
| 1 |
| 3n+1 |
| 1 |
| 3n+1-1 |
由
| 1 |
| 3n+1 |
| 1 |
| 3n |
| 1 |
| 3n+1-1 |
| 1 |
| 3n+1 |
得
| 1 |
| 3n+1 |
| 1 |
| 3n+1-1 |
| 1 |
| 3n |
| 1 |
| 3n+1 |
∴bn=2-(
| 1 |
| 3n+1 |
| 3 |
| 3n+1-1 |
| 1 |
| 3n |
| 1 |
| 3n+1 |
∴Tn =b1+b2+…+bn
>[2-(
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
| 1 |
| 3n+1 |
=2n-[(
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
| 1 |
| 3n+1 |
=2n-(
| 1 |
| 3 |
| 1 |
| 3n+1 |
| 1 |
| 3 |
即Tn>2n-
| 1 |
| 3 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目