题目内容

已知数列{an}的前n项和Sn满足:Sn=
a
a-1
(an-1)(a为常数,且a≠0,a≠1).
(Ⅰ)求{an}的通项公式;
(Ⅱ)若a=
1
3
,设bn=
1
1+an
+
1
1-an+1
,数列{bn}的前n项和为Tn.求证:Tn>2n-
1
3
考点:数列的求和,等差数列的通项公式,等比数列的通项公式,数列与不等式的综合
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出{an}是首项为a,公比为a的等比数列,由此能求出{an}的通项公式.
(Ⅱ)由a=
1
3
,得an=(
1
3
)n
bn =2-(
1
3n+1
-
1
3n+1-1
)>2-(
1
3n
-
1
3n+1
),由此利用裂项求和法能证明Tn>2n-
1
3
解答: (Ⅰ)解:∵Sn=
a
a-1
(an-1),
∴n=1时,S1=a1=
a
a-1
(a1-1)
,解得a1 =a.…(2分)
当n≥2时,有an=Sn-Sn-1
=
a
a-1
an-
a
a-1
an-1

解得
an
an-1
=a
,…(4分)
∴{an}是首项为a,公比为a的等比数列.…(5分)
an=a•an-1=an.…(6分)
(Ⅱ)证明:∵a=
1
3
,∴an=(
1
3
)n
,…(7分)
bn =
1
1+(
1
3
)n
+
1
1-(
1
3
)n+1

=
3n
3n+1
+
3n+1
3n+1-1

=
3n+1-1
3n+1
+
3n+1-1+1
3n+1-1

=1-
1
3n+1
+1+
1
3n+1-1

=2-(
1
3n+1
-
1
3n+1-1
),…(9分)
1
3n+1
1
3n
1
3n+1-1
1
3n+1

1
3n+1
-
1
3n+1-1
1
3n
-
1
3n+1
,…(11分)
bn=2-(
1
3n+1
-
3
3n+1-1
)
>2-(
1
3n
-
1
3n+1
),…(12分)
Tn =b1+b2+…+bn
>[2-(
1
3
-
1
32
)]+[2-(
1
32
-
1
33
)]+…+[2-(
1
3n
-
1
3n+1
)]
=2n-[(
1
3
-
1
32
)+(
1
32
-
1
33
)+…+(
1
3n
-
1
3n+1
)]
=2n-(
1
3
-
1
3n+1
)>2n-
1
3

即Tn>2n-
1
3
.…(14分)
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网