题目内容
已知过点P(-2,m)和Q(2m,5)的直线的斜率为1,则m的值为( )
| A、1 | B、2 | C、3 | D、4 |
考点:直线的斜率
专题:直线与圆
分析:利用斜率计算公式即可得出.
解答:
解:∵过点P(-2,m)和Q(2m,5)的直线的斜率为1,
∴
=1,解得m=1.
故选:A.
∴
| m-5 |
| -2-2m |
故选:A.
点评:本题考查了斜率计算公式,属于基础题.
练习册系列答案
相关题目
在△ABC中,角A,B,C所对的边分别为a,b,c,已知角A=30°,a=8,b=8
,则△ABC的面积等于
( )
| 3 |
( )
A、32
| ||||
B、32
| ||||
C、32
| ||||
D、64
|
已知y=f(x)是定义域为R的奇函数,且当x>0时,f(x)=2x+x3-4.若存在x0∈I,使得f(x0)=0,则区间I不可能是( )
| A、(-2,-1) |
| B、(-1,1) |
| C、(1,2) |
| D、(-1,0) |
设min{p,q}表示p,q两者中的较小者,若函数f(x)=min{3-x,log2x},则满足f(x)<0的x的取值范围是( )
| A、(0,1)∪(3,+∞) | ||
| B、(1,3) | ||
| C、(-∞,1)∪(3,+∞) | ||
D、(0,1)∪(
|
已知函数f(x)=
sin(2x+ϕ),若f(a)=
,则f(a+
)与f(a+
)的大小关系是( )
| 3 |
| 3 |
| 5π |
| 6 |
| π |
| 12 |
A、f(a+
| ||||
B、f(a+
| ||||
C、f(a+
| ||||
| D、大小与a、ϕ有关 |