题目内容

已知Sn为数列{an}的前n项和,Sn=
1
2
n2+
11
2
n;数列{bn}满足:b3=11,bn+2=2bn+1-bn,其前9项和为153.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设Tn为数列{cn}的前n项和,cn=
6
(2an-11)(2bn-1)
,求Tn
考点:数列的求和
专题:等差数列与等比数列
分析:(I)由于数列{an}的前n项和,Sn=
1
2
n2+
11
2
n.当n=1时,a1=S1;当n≥2时,an=Sn-Sn-1即可得出.由b3=11,bn+2=2bn+1-bn,可知数列{bn}是等差数列,设公差为d.由于前9项和为153,利用前n项和公式即可得出.
(II)cn=
6
(2an-11)(2bn-1)
=
6
(2n+10-11)(6n+4-1)
=
1
2n-1
-
1
2n+1
,利用“裂项求和”即可得出.
解答: 解:(I)∵数列{an}的前n项和,Sn=
1
2
n2+
11
2
n.
∴当n=1时,a1=S1=
1
2
+
11
2
=6;
当n≥2时,an=Sn-Sn-1=
1
2
n2+
11
2
n
-[
1
2
(n-1)2+
11
2
(n-1)]
=n+5.
当n=1时,上式成立,
∴an=n+5.
∵b3=11,bn+2=2bn+1-bn
∴数列{bn}是等差数列,设公差为d.
∵前9项和为153,
∴153=9b1+
9×8
2
d
,b3=b1+2d=11.解得b1=5,d=3.
∴bn=5+3(n-1)=3n+2.
(II)cn=
6
(2an-11)(2bn-1)
=
6
(2n+10-11)(6n+4-1)
=
1
2n-1
-
1
2n+1

∴Tn=(1-
1
3
)+(
1
3
-
1
5
)
+…+(
1
2n-1
-
1
2n+1
)

=1-
1
2n+1

=
2n
2n+1
点评:本题考查了递推式的意义、等差数列的通项公式与前n项和公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网