题目内容

18.在一段时间内,某种商品的价格x(元)和需求量y(件)之间的一组数据如表所示:
价格x/元1416182022
需求量y/件56503137
(1)求出y关于x的线性回归方程;
(2)请用R2和残差图说明回归方程拟合效果的好坏.
参考数据:回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x,R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$
参考数据:$\sum_{i=1}^5{x_i^2=1660}$,$\sum_{i=1}^5{{x_i}{y_i}}$=3992.

分析 (1)根据所给的数据,做出变量x,y的平均数,根据最小二乘法做出线性回归方程的系数b,在根据样本中心点一定在线性回归直线上,求出a的值.
(2)求出回归模型的相关系数,作出残差图,可判断回归模型拟合效果的好坏.

解答 解:(1)由题表中数据可得$\overline x=18$,$\overline y=45.4$.
由计算公式得$\hat b=\frac{{\sum_{i=1}^5{{x_i}{y_i}-5\overline x\;•\;\overline y}}}{{\sum_{i=1}^5{x_i^2-5{{\overline x}^2}}}}=\frac{3992-5×18×45.4}{{1660-5×{{18}^2}}}=-2.35$.$\hat a=\overline y-\hat b\overline x=45.4+2.35×18=87.7$.
故y关于x的线性回归方程为$\hat y=-2.35x+87.7$.
(2)列表:

编号12345
${y_i}-{\hat y_i}$1.2-0.1-2.40.31
${y_i}-\overline y$10.64.6-2.4-4.4-8.4
所以$\sum_{i=1}^5{{{({y_i}-{{\hat y}_i})}^2}}=8.3$,$\sum_{i=1}^5{{{({y_i}-\bar y)}^2}}=229.2$,
相关指数${R^2}=1-\frac{{\sum_{i=1}^5{{{({y_i}-{{\hat y}_i})}^2}}}}{{\sum_{i=1}^5{{{({y_i}-\bar y)}^2}}}}=1-\frac{8.3}{229.2}≈0.964$.
因为0.964很接近于1,所以该模型的拟合效果好.
残差图如图:

残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适.

点评 本题考查线性回归方程,考查最小二乘法,考查预报值的求法,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网