题目内容

过点P(1,
2
)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k等于(  )
A、-
2
2
B、
2
2
C、-
1
2
D、
1
2
考点:直线与圆相交的性质
专题:计算题,直线与圆
分析:先要画出满足条件的图形,数形结合容易得到符合题目中的条件的数理关系,由劣弧所对的圆心角最小弦长最短,及过圆内一点最短的弦与过该点的直径垂直,易得到解题思路.
解答: 解:如图示,由图形可知:
点P(1,
2
)在圆(x-2)2+y2=4的内部,
圆心为O(2,0)要使得劣弧所对的圆心角最小,
只能是直线l⊥OA,
所以kl=-
1
kOA
=-
1
-
2
=
2
2

故选:B.
点评:垂径定理及其推论是解决直线与圆关系时常用的定理,要求大家熟练掌握,垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.相关推论,过圆内一点垂直于该点直径的弦最短,且弦所在的劣弧最短,优弧最长,弦所对的圆心角、圆周角最小.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网