题目内容
已知a,b,c是三角形的三边,且直线ax+by+c=0与圆x2+y2=1相离,则此三角形( )
| A、是锐角三角形 |
| B、是直角三角形 |
| C、是钝角三角形 |
| D、不确定 |
考点:直线与圆的位置关系
专题:计算题,直线与圆
分析:先根据ax+by+c=0与圆x2+y2=1相离,可得到圆心到直线ax+by+c=0的距离大于半径1,进而可得到c2>a2+b2,可得到cosC=
<0,从而可判断角C为钝角,故三角形的形状可判定.
| a2+b2-c2 |
| 2ab |
解答:
解:由已知得,圆心到直线的距离d=
>1,
∴c2>a2+b2,∴cosC=
<0,
故△ABC是钝角三角形.
故选C.
| |c| | ||
|
∴c2>a2+b2,∴cosC=
| a2+b2-c2 |
| 2ab |
故△ABC是钝角三角形.
故选C.
点评:本题主要考查三角形形状的判定、点到直线的距离公式、直线与圆的位置关系.考查基础知识的综合运用.
练习册系列答案
相关题目
已知f(x)是定义在(-∞,+∞)上的增函数,若a∈R,则( )
| A、f(a)>f(2a) |
| B、f(a2)<f(a) |
| C、f(a+3)>f(a-2) |
| D、f(6)>f(a) |
过点P(1,
)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k等于( )
| 2 |
A、-
| ||||
B、
| ||||
C、-
| ||||
D、
|
若函数f(x)=
在x∈(-2,+∞)上单调递减,则实数a的取值范围是( )
| ax+1 |
| x+2 |
| A、(-∞,0) | ||
B、(
| ||
C、(-∞,
| ||
D、(0,
|