题目内容
14.在△ABC中,内角A,B,C对边分别为a,b,c,已知$\frac{b}{a+c}$=$\frac{a+b-c}{a+b}$(Ⅰ)求角A
(Ⅱ)若a=15,b=10,求cosB的值.
分析 (Ⅰ)由已知整理可得:b2+c2-a2=bc,利用余弦定理可求cosA=$\frac{1}{2}$,结合范围A∈(0,π),可求A的值.
(Ⅱ)利用大边对大角可求B为锐角,利用正弦定理可求sinB=$\frac{b•sinA}{a}$,进而利用同角三角函数基本关系式可得cosB的值.
解答 解:(Ⅰ)∵$\frac{b}{a+c}$=$\frac{a+b-c}{a+b}$,整理可得:b2+c2-a2=bc,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{3}$.
(Ⅱ)∵A=$\frac{π}{3}$,a=15,b=10,a>b,
∴B为锐角,
∴sinB=$\frac{b•sinA}{a}$=$\frac{10×\frac{\sqrt{3}}{2}}{15}$=$\frac{\sqrt{3}}{3}$,可得:cosB=$\sqrt{1-si{n}^{2}B}$=$\frac{\sqrt{6}}{3}$
点评 本题主要考查了余弦定理,大边对大角,正弦定理,同角三角函数基本关系式在解三角形中的应用,考查了转化思想,属于基础题.
练习册系列答案
相关题目
17.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为60秒.若一名行人来到该路口遇到红灯,则至少需要等待20秒才出现绿灯的概率为( )
| A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
5.下列命题中是存在性命题的是( )
| A. | ?x∈R,x2>0 | B. | ?x∈R,x2≤0 | ||
| C. | 平行四边形的对边平行 | D. | 矩形的任一组对边相等 |
2.已知下列四个命题:
P1:若直线l和平面α内无数条直线垂直,则l⊥α
P2:若f(x)=2x-2-x,则?x∈R,f(-x)=-f(x)
P3:在△ABC中,若A>B,则sinA>sinB
其中真命题的个数是( )
P1:若直线l和平面α内无数条直线垂直,则l⊥α
P2:若f(x)=2x-2-x,则?x∈R,f(-x)=-f(x)
P3:在△ABC中,若A>B,则sinA>sinB
其中真命题的个数是( )
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
9.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线经过(3,-4),则此双曲线的离心率为( )
| A. | $\frac{\sqrt{7}}{4}$ | B. | $\frac{5}{4}$ | C. | $\frac{25}{9}$ | D. | $\frac{5}{3}$ |
1.设全集U=R,集合M={x|2x(x-2)≤8},N={x|1n|x-1|>0},则M∩C∪N=( )
| A. | (-1,3) | B. | [0,2] | C. | (-1,0]∪[2,3) | D. | R |