题目内容

9.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线经过(3,-4),则此双曲线的离心率为(  )
A.$\frac{\sqrt{7}}{4}$B.$\frac{5}{4}$C.$\frac{25}{9}$D.$\frac{5}{3}$

分析 利用已知条件列出方程,求解a,b关系,然后求解离心率.

解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线经过(3,-4),
可得$\frac{b}{a}=\frac{4}{3}$,即$\frac{{c}^{2}-{a}^{2}}{{a}^{2}}=\frac{16}{9}$,
解得e=$\frac{5}{3}$.
故选:D.

点评 本题考查双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网