ÌâÄ¿ÄÚÈÝ
ijУÔÚÒ»´Î¶Ôϲ»¶Êýѧѧ¿ÆºÍϲ»¶ÓïÎÄѧ¿ÆµÄͬѧµÄ³éÑùµ÷²éÖУ¬Ëæ»ú³éÈ¡ÁË 100Ãûͬѧ£¬Ïà¹ØµÄÊý¾ÝÈçϱíËùʾ£º
£¨1£©ÓɱíÖÐÊý¾ÝÖ±¹Û·ÖÎö£¬Ï²»¶ÓïÎÄѧ¿ÆµÄͬѧÊÇ·ñÓëÐÔ±ðÓйأ¿
£¨2£©Ó÷ֲã³éÑù·½·¨ÔÚϲ»¶ÓïÎÄѧ¿ÆµÄͬѧÖÐËæ»ú³éÈ¡5Ãû£¬Å®Í¬Ñ§Ó¦¸Ã³éÈ¡¼¸Ãû£¿
£¨3£©£¨ÎĿƣ©ÔÚÉÏÊö³éÈ¡µÄ5ÃûͬѧÖÐÈÎÈ¡2Ãû£¬ÇóÇ¡ÓÐ1ÃûͬѧΪÄÐÐԵĸÅÂÊ£®
£¨Àí¿Æ£©ÔÚÉÏÊö³éÈ¡µÄ5ÃûͬѧÖÐÈÎÈ¡2Ãû£¬Çó³éµ½Å®Í¬Ñ§µÄÈËÊý¦ÎµÄ·Ö²¼ÁÐºÍÆÚÍû£®
| Êýѧѧ¿Æ | ÓïÎÄѧ¿Æ | ×Ü¼Æ | |
| ÄÐÉú | 40 | 18 | 58 |
| Å®Éú | 15 | 27 | 42 |
| ×Ü¼Æ | 55 | 45 | 100 |
£¨2£©Ó÷ֲã³éÑù·½·¨ÔÚϲ»¶ÓïÎÄѧ¿ÆµÄͬѧÖÐËæ»ú³éÈ¡5Ãû£¬Å®Í¬Ñ§Ó¦¸Ã³éÈ¡¼¸Ãû£¿
£¨3£©£¨ÎĿƣ©ÔÚÉÏÊö³éÈ¡µÄ5ÃûͬѧÖÐÈÎÈ¡2Ãû£¬ÇóÇ¡ÓÐ1ÃûͬѧΪÄÐÐԵĸÅÂÊ£®
£¨Àí¿Æ£©ÔÚÉÏÊö³éÈ¡µÄ5ÃûͬѧÖÐÈÎÈ¡2Ãû£¬Çó³éµ½Å®Í¬Ñ§µÄÈËÊý¦ÎµÄ·Ö²¼ÁÐºÍÆÚÍû£®
¿¼µã£ºÀëÉ¢ÐÍËæ»ú±äÁ¿¼°Æä·Ö²¼ÁÐ,ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍûÓë·½²î
רÌ⣺¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨1£©Óɱí¸ñ¿ÉµÃ£ºÄÐÐÔµÄ58ÃûͬѧÖÐÓÐ18Ãûϲ»¶ÓïÎÄѧ¿Æ£¬¶øÅ®ÐÔµÄ42ÃûͬѧÖÐÓÐ27Ãûϲ»¶ÓïÎÄѧ¿Æ£¬¾¹ýÖ±¹Û·ÖÎö£¬Ï²»¶ÓïÎÄѧ¿ÆµÄͬѧÊÇÓëÐÔ±ðÓйصģ®
£¨2£©ÏÈÇó³ö³éÑù±È£¬ÓÉ´ËÄÜÇó³öÅ®ÉúÓ¦³éÈ¡ÈËÊý£®
£¨3£©£¨ÎĿƣ©³éÈ¡µÄ5ÃûͬѧÖÐÅ®ÉúÓÐ3ÈË£¬ÄÐÉúÓÐ2ÈË£¬ÓÉ´ËÀûÓÃÁоٷ¨ÄÜÇó³öÇ¡ÓÐ1ÃûͬѧΪÄÐÐԵĸÅÂÊ£®
£¨Àí¿Æ£©ÓÉÒÑÖªµÃ¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁкÍE¦Î£®
£¨2£©ÏÈÇó³ö³éÑù±È£¬ÓÉ´ËÄÜÇó³öÅ®ÉúÓ¦³éÈ¡ÈËÊý£®
£¨3£©£¨ÎĿƣ©³éÈ¡µÄ5ÃûͬѧÖÐÅ®ÉúÓÐ3ÈË£¬ÄÐÉúÓÐ2ÈË£¬ÓÉ´ËÀûÓÃÁоٷ¨ÄÜÇó³öÇ¡ÓÐ1ÃûͬѧΪÄÐÐԵĸÅÂÊ£®
£¨Àí¿Æ£©ÓÉÒÑÖªµÃ¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁкÍE¦Î£®
½â´ð£º
½â£º£¨1£©Óɱí¸ñ¿ÉµÃ£ºÄÐÐÔµÄ58ÃûͬѧÖÐÓÐ18Ãûϲ»¶ÓïÎÄѧ¿Æ£¬
¶øÅ®ÐÔµÄ42ÃûͬѧÖÐÓÐ27Ãûϲ»¶ÓïÎÄѧ¿Æ£¬
ËùÒÔ£¬¾¹ýÖ±¹Û·ÖÎö£¬Ï²»¶ÓïÎÄѧ¿ÆµÄͬѧÊÇÓëÐÔ±ðÓйصģ®
£¨2£©´ÓÌâÖÐËù¸øµÄÌõ¼þ¿ÉÒÔ¿´³öϲ»¶ÓïÎÄѧ¿ÆµÄͬѧ¹²45ÈË£¬Ëæ»ú³éÈ¡5ÈË£¬
Ôò³éÑù±ÈΪ
=
£¬
¹ÊÅ®ÉúÓ¦³éÈ¡27¡Á
=3£¨ÈË£©£®
£¨3£©£¨ÎĿƣ©³éÈ¡µÄ5ÃûͬѧÖÐÅ®ÉúÓÐ3ÈË£¬ÄÐÉúÓÐ2ÈË£¬¼ÇÅ®ÉúΪa¡¢b¡¢c£¬ÄÐÉúΪ1¡¢2£¬
Ôò´Ó5ÃûͬѧÖÐÈÎÈ¡2ÃûµÄ»ù±¾Ê¼þÓУº£¨a£¬b£©£¬£¨a£¬c£©£¬£¨a£¬1£©£¬£¨a£¬2£©£¬£¨b£¬c£©£¬£¨b£¬1£©£¬£¨b£¬2£©£¬£¨c£¬1£©£¬£¨c£¬2£©£¬£¨1£¬2£©
¹²10¸ö£¬ÆäÖÐÇ¡ÓÐ1¸öÄÐÉúµÄÓÐ6¸ö£¬¹ÊËùÇó¸ÅÂÊΪ£º
=
£®
£¨Àí¿Æ£©ÓÉÒÑÖªµÃ¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬
P£¨¦Î=0£©=
=0.1£¬
P£¨¦Î=1£©=
=0.6£¬
P£¨¦Î=2£©=
=0.3£¬
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º
¡àE¦Î=0¡Á0.1+1¡Á0.6+2¡Á0.3=1.2£®
¶øÅ®ÐÔµÄ42ÃûͬѧÖÐÓÐ27Ãûϲ»¶ÓïÎÄѧ¿Æ£¬
ËùÒÔ£¬¾¹ýÖ±¹Û·ÖÎö£¬Ï²»¶ÓïÎÄѧ¿ÆµÄͬѧÊÇÓëÐÔ±ðÓйصģ®
£¨2£©´ÓÌâÖÐËù¸øµÄÌõ¼þ¿ÉÒÔ¿´³öϲ»¶ÓïÎÄѧ¿ÆµÄͬѧ¹²45ÈË£¬Ëæ»ú³éÈ¡5ÈË£¬
Ôò³éÑù±ÈΪ
| 5 |
| 45 |
| 1 |
| 9 |
¹ÊÅ®ÉúÓ¦³éÈ¡27¡Á
| 1 |
| 9 |
£¨3£©£¨ÎĿƣ©³éÈ¡µÄ5ÃûͬѧÖÐÅ®ÉúÓÐ3ÈË£¬ÄÐÉúÓÐ2ÈË£¬¼ÇÅ®ÉúΪa¡¢b¡¢c£¬ÄÐÉúΪ1¡¢2£¬
Ôò´Ó5ÃûͬѧÖÐÈÎÈ¡2ÃûµÄ»ù±¾Ê¼þÓУº£¨a£¬b£©£¬£¨a£¬c£©£¬£¨a£¬1£©£¬£¨a£¬2£©£¬£¨b£¬c£©£¬£¨b£¬1£©£¬£¨b£¬2£©£¬£¨c£¬1£©£¬£¨c£¬2£©£¬£¨1£¬2£©
¹²10¸ö£¬ÆäÖÐÇ¡ÓÐ1¸öÄÐÉúµÄÓÐ6¸ö£¬¹ÊËùÇó¸ÅÂÊΪ£º
| 6 |
| 10 |
| 3 |
| 5 |
£¨Àí¿Æ£©ÓÉÒÑÖªµÃ¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬
P£¨¦Î=0£©=
| ||
|
P£¨¦Î=1£©=
| ||||
|
P£¨¦Î=2£©=
| ||
|
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º
| ¦Î | 0 | 1 | 2 |
| P | 0.1 | 0.6 | 0.3 |
µãÆÀ£º±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÁоٷ¨ºÍÅÅÁÐ×éºÏ֪ʶµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÏÂÁÐÃüÌâÖÐÎªÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A¡¢Èôx¡Ù0£¬Ôòx+
| ||
| B¡¢ÃüÌ⣺Èôx2=1£¬Ôòx=1»òx=-1µÄÄæ·ñÃüÌâΪ£ºÈôx¡Ù1ÇÒx¡Ù-1£¬Ôòx2¡Ù1 | ||
| C¡¢¡°a=1¡±ÊÇ¡°Ö±Ïßx-ay=0ÓëÖ±Ïßx+ay=0»¥Ïà´¹Ö±¡±µÄ³äÒªÌõ¼þ | ||
| D¡¢ÈôÃüÌâP£º?x¡ÊR£¬x2-x+1£¼0£¬Ôò©VP£º?x¡ÊR£¬x2-x+1£¾0 |