题目内容

14.银川一中最强大脑社对高中学生的记忆力x和判断力y进行统计分析,得表数据
x681012
y2356
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$
(2)试根据已求出的线性回归方程,预测记忆力为9的同学的判断力.
参考公式:$\left\{{\begin{array}{l}{\hat b=\frac{{\sum_{i=1}^n{({x_i}-\bar x)({y_i}-\bar y)}}}{{\sum_{i=1}^n{{{({x_i}-\bar x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x\bar y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\bar x}^2}}}}}\\{\hat a=\bar y-\hat b\bar x}\end{array}}\right.$.

分析 (1)计算$\overline{x}$、$\overline{y}$,求出回归系数,写出回归直线方程;
(2)根据(1)的线性回归方程,计算x=9时$\stackrel{∧}{y}$的值即可.

解答 解:(1)计算$\overline{x}$=$\frac{1}{4}$×(6+8+10+12)=9,
$\overline{y}$=$\frac{1}{4}$×(2+3+5+6)=4,
$\sum_{i=1}^{4}$xiyi=6×2+8×3+10×5+12×6=158,
$\sum_{i=1}^{4}$${{x}_{i}}^{2}$=62+82+102+122=344,
∴回归系数为$\stackrel{∧}{b}$=$\frac{158-4×9×4}{344-4{×9}^{2}}$=0.7,
$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$=4-0.7×9=-2.3,
∴回归直线方程为$\stackrel{∧}{y}$=0.7x-2.3;
(2)根据(1)的线性回归方程,计算x=9时,$\stackrel{∧}{y}$=0.7×9-2.3=4,
即预测记忆力为9时,该同学的判断力为4.

点评 本题考查了线性回归方程系数的求法与应用问题,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网