题目内容

已知有相同焦点F1、F2的椭圆
x2
m
+y2=1(m>1)和双曲线
x2
n
-y2=1(n>0),点P是它们的一个交点,则三角形F1PF2面积的大小是
 
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:利用双曲线和椭圆的定义、余弦定理和三角形的面积计算公式,即可得出三角形的面积.
解答: 解:如图所示,不妨设两曲线的交点P位于双曲线的右支上,设|PF1|=s,|PF2|=t.
由双曲线和椭圆的定义可得
s+t=2
m
s-t=2
n

解得s2+t2=2m+2n,st=m-n.
在△PF1F2中,cos∠F1PF2=
s2+t2-4c2
2st
=
2m+2n-4(m-1)
2m-2n

∵m-1=n+1,
∴m-n=2,
∴cos∠F1PF2=0,∴∠F1PF2=90°.
∴△F1PF2面积为
1
2
st=1.
故答案为:1.
点评:本题考查椭圆与双曲线方程及其几何性质及代数运算能力.熟练掌握双曲线和椭圆的定义、余弦定理和三角形的面积计算公式是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网