题目内容
函数f(x)=
+
的定义域为( )
| 1 | ||
|
| 1-2log6x |
A、(2,
| ||
B、(2.
| ||
C、(0,
| ||
D、(0,
|
考点:对数函数的单调性与特殊点,对数函数的定义域
专题:函数的性质及应用
分析:根据开偶次方根被开方数大于等于0,分母不为0,对数函数的真数大于0,列出不等式求出定义域.
解答:
解:由
⇒
,
可得函数f(x)=
+
的定义域为(2,
],
故选B.
|
|
可得函数f(x)=
| 1 | ||
|
| 1-2log6x |
| 6 |
故选B.
点评:本题考查求函数的定义域需注意:开偶次方根被开方数大于等于0,分母不为0,对数函数的真数大于0,底数大于0且不等于1.
练习册系列答案
相关题目
已知椭圆C1、C2的离心率分别为e1、e2,若椭圆C1比C2更圆,则e1与e2的大小关系正确的是( )
| A、e1<e2 |
| B、e1=e2 |
| C、e1>e2 |
| D、e1、e2大小不确定 |
函数f(x)=3sin(2x-
)的图象为C,如下结论中正确的是( )
| π |
| 3 |
A、图象C关于直线x=
| ||||
B、函数f(x)在区间(-
| ||||
C、图象C关于点(-
| ||||
D、y=3sin2x向右平移
|
定义在R上的偶函数f(x),满足f(x+2)=f(x),且在区间[-1,0]上为递增,则( )
A、f(
| ||
B、f(2)<f(3)<f(
| ||
C、f(3)<f(2)<f(
| ||
D、f(3)<f(
|
方程
-
=1表示椭圆,则α的取值范围是( )
| x2 |
| 3 |
| y2 | ||
sin(2α+
|
A、
| ||||
B、
| ||||
C、kπ+
| ||||
D、2kπ+
|
函数f(x)=1-2sinx(sinx+
cosx)的图象向右平移
个单位得函数g(x)的图象,则函数g(x)的解析式是( )
| 3 |
| π |
| 3 |
A、g(x)=2sin(2x-
| ||
| B、g(x)=2cos2x | ||
C、g(x)=2cos(2x+
| ||
D、g(x)=2sin(2x+
|