题目内容

2.函数y=log2(3cosx+1),x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的值域为[0,2].

分析 根据x∈[-$\frac{π}{2}$,$\frac{π}{2}$],得出1≤3cosx+1≤4,利用对数函数的性质,即可得出结论.

解答 解:∵x∈[-$\frac{π}{2}$,$\frac{π}{2}$],∴0≤cosx≤1,
∴1≤3cosx+1≤4,
∴0≤log2(3cosx+1)≤2,
故答案为[0,2].

点评 本题考查三角函数、对数函数的性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网