题目内容

在△ABC中,a,b,c分别为角A,B,C所对的边,若ccos A=b,则△ABC(  )
A、一定是锐角三角形
B、一定是钝角三角形
C、一定是直角三角形
D、一定是斜三角形
考点:正弦定理
专题:解三角形
分析:已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式变形,得到cosC为0,确定出C为直角,即可得到三角形为直角三角形.
解答: 解:已知等式ccosA=b,利用正弦定理化简得:sinCcosA=sinB=sin(A+C)=sinAcosC+cosAsinC,
整理得:sinAcosC=0,
∵sinA≠0,∴cosC=0,即C=90°,
则△ABC为直角三角形.
故选:C.
点评:此题考查了正弦定理,以及两角和与差的正弦函数公式,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网